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Recursive proof systems

Suppose we want to prove statements succinctly:

$1/\$2/\CIZ3/\.../\LEn
l SNARK!
e

e Large circuit? (large parameters; long proving time ... )

o If x;,x;11,... not known yet? (“zk"-rollups,...)




Recursive proof systems

Suppose we want to prove statements succinctly:

L1 L9 L3 Ln
T —» 79 —» 703 oo — Ty

Recursive proof! = incrementally verifiable computation
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scalable rollups
succinct blockchains ([VIINA )
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Recursive AGM
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Zero-te' t challenge

Challe nge

e P ri n t 2 O 2 4 Find (ultivariate polynomial P : (F")" — F" defined over the extension field F" such
that

1 < degree(P) < d (3)

(30, 315+ 3¢ 1) :H(ﬁ) (4)
Recursive AGM i IR
g1,492,.-.,9q —

F. The length fP th b e field units th (d+l)
Modelling H as a random o

acle, we obtain that each string (ag

3oy ag
equal pr bb!tyt appea Thnmb of roots of P is tmtd o the
that (5) holds is <. gl

_1) has

If (ci,c;)=9"€G — ¢ with ¢’ = gf/
() =g"€G  —c with g = [[ g
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he zero-testing assumption

Let IF finite field, H: {0,1}* — [F hash function
Simplification: “find polynomial 0 # f € F(S9[X] such that f(H(f)) = 0"

Zero-testing.

o H:{0,1} > F
e (Setup,Com) a commitment scheme over M
e D: M — FEI[X]
Given par < Setup, find m, s.t.
for f:=D(m): e f#0
o f(H(Comps(m)) =0




Using Z

| have polynomials fi, fo2

st. fo = f7
Zero-testing
® Cm; = Com(fz)
cmy,Cmso
>
- o s [
* y; = fi(a)
® T, ... opening proofs
Yi1,7m2,Y2, 72
=

e check my,mo
r 3
e return ys = Y3




Using Z

| have polynomialg fi, fo Claim. For D(f1, f2) = fo — f} #£0
s.t. fo = fi soundness-A breaks \
gﬂ zero-testing
é e cm; := Com(f;)

<a— Setyp

cCmi,Cmgo

a = H(cmq|lcmy)

e yi == fi(a)

® T, ... opening proofs

Y1,72,Y2, 72

>

e check T, 72
‘3
e return ys = Y3

9 -2 Sr fo(a) = (fila))® =

v
— f —» 0




Srs i— (Q, 7], [1"2] Lo [T”Jrz}1 . [7]2).

Index(srs, i): Given 1, consisting of the gate constraints (si;. sRrq, 50i. SMi, 5Ci)ie[n) and
the wire permutation ¢*, compute the polynomials

SUX) =) stli(X), SR(X) =) srila(X),

So(X) = Zie[n] s0iLi(X), Sm(X) = Z!.E[n] smiLi(X),

Sc(X) = Zie[n] scili(X), Sea(X) = Zie[n] o™ (i) L:(X),
Sp2(X) = Zie[n] of(n+i)Li(X), So3(X):= Zie[n] o*(2n +i)Li(X),

and their KZG commitments with respect to srs,
[SL(T)] [SR(T)]1 »
[SC(T)]l ) [80,1(7')]1 ;
Return the prover and verifier parameters
pp = (SI'S._. SL': SR‘J SO! ‘S'M': SC'! So’_.l: SO',Q'! 80',3):

vp = (srs,cmg,, CMgy, CMg,, CMs,,, CMs., CMg_ |, Mg, ,,CMg,_ ).

[50(7)11 ’
cmg, , = [Se2(7)],

[SM(T)]l )

cmga:‘.,) = [55,3(7')]1 .

cmg, = cmgy == cms, == CMmsy =

Cmg, = ctmg, , =

PFOVE(PP: (xi)ie[f]a ('wz')z'e[gn])i

1. Sample blinding scalars py, ...

,p6 + [ and compute the wire polynomia.]s

A(X) = (p1 X + p2)Zu(X) + Z U'
B(X) (.,OQ,X + Pa ZLHI + Z U'n—i—z ):
C(X) (pEX + Pé ZJHI + Z f'Zn-H .r. )

The first part of the proof are the commitments

cmy = [A(7)],, cmp = [B(7)],,

cme = [O(7)]; -

2. Let transy := vp|[x with x := (z;);c[q. Compute the permutation challenges 3,~ € F:

3 := H(trans;), where trans; := transp|lcm 4||cmpg|cme,

v := H(transy), where trans; := trans,|| 3.

10-1

5.

3. Define the polynomials

f(X) = (A(X) + BSig,1(X) +7)(B(X) + BSja2(X
9(X) = (A(X) + BSs1(X) +7)(B(X) + 8S,2(X) + 1) (C(X) + 8S53(X) +7),

where Siq1(X) ==X, Sig2(X) == k11X, Sia3(X) = koX are polynomials interpolat-
ing the identity permutation id*: [3n] — H’ over H.

) + IC(X) + BSia3(X) +7),

Sample blinding scalars p7, ps, po < F and compute the permutation-check polyno-
mial

O(X) = (pr X%+ ps X + po) Zu(X) + D Li( H wj
ie[n] J=1
f(wv") {w,—l—?wf-i—"r (wns +3k1wJ+"r]{ugn+ +Bkzw? +-)
(Whefe g(w?) = (w,; 180" (;}+w)(w,1+J+?3cr*(n+;}+v)(umig+3cr {2n+,e)+~.r})‘

If g(w’) = 0 for some j € [n], abort. The second part of the proof is the commitment
cmy = [O(7)] -
Compute the quotient challenge a € F as
a = H(trans3), where transg := transz||vy||cme.

Define the public-input polynomial Spi(X) =) ;¢ iLi(X), and

SL(X)A(X) + Sr(X)B(X) + So(X)C(X)
Gates(X) = ( + Su(X)AX)B(X) + Sc(X) — Spi(X) ) !
Copy, (X) = B(X) f(X) — B(Xw)g(X).

Copyz(X) == L1(X)(®(X) —1).
Compute the quotient polynomial of degree < 3n + 5

 Gates(X) + a - Copy, (X) + a? - Copy,(X)
- Zy(X) 7

and split it into 3 unique polynomials 77, 7%, T3 € F(="*D[X] such that
T(X) = T{(X) + X" T3(X) + X*" - T3(X).

T(X

Then, sample blinding scalars pyg, p11 < F and define

Tl(X) = TI(X) + plnX'rH-B,
Ty(X) = T3(X) — pro + puX"*?,
T3(X) = T;(X) — M-

(These polynomials still satisfy T'(X) = T1(X) + X2 . Ty(X) + XM . T3( X))

The third nart of the nroof are the commitments




Srs i— (Q, 7], [1"2] Lo [‘,"'”Jrz}1 . [7]2).

Index(srs, i): Given 1, consisting of the gate constraints (si;, Sr;. $0i. SMi, 5Ci)ieln) and
the wire permutation ¢*, compute the polynomials

SL(X) = Zi&w sLLi(X), Sr(X) = Zi&[n] sriLi(X),

So(X) = Zi&[n] s0iLi(X), Sm(X) = Zi&[n] smiLi(X),

Sc(X) = ZEM scili(X), Sp1(X) = ZEM o (i)Li(X),

SG,Q(X) = Zit’:[n] o’ (n + i)'cf(X)! 50,3(X) = Zit’:[n] (-T*(Qn_ + ?)'CL(X)
and their KZG commitments with respect to srs,
cms, = [SL(T)]y, emsg = [SR(T)]y . emsy = [So(T)] . emsy = [Sm(T)];
cmg. == [Sc(7)];, cmg,, = [Ss1(7)],, cmg,, = [Ss2(7)],, cmg,, = [Se3(T)];-
Return the prover and verifier parameters

pp = (SFS._. SL': ‘SR‘J iS'CH ‘SM ] ‘SC'! "‘S'O'_.l: *90',21 *90',3):

vp = (Srs,cmg,, Mg, CMg,, €My, M, CMg, |, CMg, ,, CMg,, 4 ).

For m = (S, Sk, So, SMm, Sc, So.1, 552,953, %, A, B, '), define )= T | m

Dl(m) e H f(Xﬁ,X,y’wz) — H g(XﬁjX’yywz) :W)Q(X)* Compar D

i€[n] i€[n]

with f(X35, X, Xs) := (A(X(s) + X5 X5 + Xv) s }{
(B(Xs) + Xgk1 X5 + X,) (C(X5) + XgkaXs + X)) mne {
87

and  g(Xp, Xy, X5) = (A(Xs) + XpSo1(X5) + X)) o
(B(X5) + XpS02(Xs) + X5) (C(X5) + XpSo3(Xs) + X))

3. Define the polynomials
F(X) = (A(X) + 8Sia,1(X) +7)(B(X) + BSia 2(X) + 1)(C(X) + 8Sia3(X) + 7),
9(X) = (A(X) + 85:,1(X) + 7)(B(X) + 8552(X) + 7)(C(X) + B5,3(X) +7),

where Siq1(X) ==X, Sig2(X) == k11X, Sia3(X) = koX are polynomials interpolat-
ing the identity permutation id™: [3n] — H’ over H.

Sample blinding scalars p7, pg, po < [ and compute the permutation-check polyno-
mial

i1 .
®(X) = (pr X% + ps X + po) Zu(X) + Y Li(X) ][] J:f((:f))
g

ie[n]

where flwd) (wy+Buw’ +y) (wn 45+ 8k1w? +) (wanyj+Bhawd +7)
- (;{[,\,IJ ] - ('“".f +;’3g' (j)—f—"‘lr}(w“ +37 +SJ‘ ('F'i.“r‘j)‘f"}"}('u,'g-” +3 +I.'-3CT* {2'”. +:ﬂ:|+"|") )

If g(w’) = 0 for some j € [n], abort. The second part

cmy = [O(7)] -

4. Compute the quotient challenge a € [F as

<«—Setup

v or— Hitraneal whora +rans-% =t

R(X)B(A

B(X) + + +

(X)) +2 '

"and defi _> f _> O
210 + P11--

k A4 11eos l.)Ulv\‘ LIVIIINICl Dulll D(]JL'IDL‘)" A l\ll } — 1 J_ (_XJ + X'ﬂ,“{‘g - I-:z(X) —‘l_ XQ'”.“""‘I - I:%(X) J

The third nart of the nroof are the commitments



Jusititying zero-testing

Theorems.
Zero-testing holds for H: {0,1}* — F, (Setup,Com)

w.rt. D: M — FED[X] Zero-testing

o ...if H i1s modeled as a random oracle

and (Setup,Com) is binding

o ...if (Setup,Com) is KZG over a generic group

and H is balanced
™ implied by collision-resistance

Open questions: cryptanalysis

for used hash functions
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