When POlynomial System SOlving
became a threat for symmetric primitives

Léo Perrin’
"Inria, France

ZKCS 2026, February 2026, Vienna

v d

: informatics g mathematics

Algebraic attack?

What do we mean by that?

Algebraic attack? (1/3)

Vou.7, 1021 MATHEMATICS: A. B. COBLE 245

GEOMETRIC ASPECTS OF THE ABELIAN MODULAR
FUNCTIONS OF GENUS FOUR (I)

By Arraur B. CosLe!
DrpARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS
Communicated by E. H. Moore, June 21, 1021

1. Introduction.—The plane curve of genus 4 has a canonical series
3 and is mapped from the plane by the canonical adjoints into the normal
curve of genus 4, a space sextic which is the complete intersection of a
quadric and a cubic surface. If we denote a point of this quadric by the
parameters f, 7 of the cross generators through it the equation of this
sextic is F = (ar)® (af)* = 0. For geometric purposes we may define
a modular function to be any rational or irrational invariant of the form
F, bi-cubic in the digredient binary variables 7, f; for transcendental

H 7 purposes it is desirable to restrict this definition by requiring further
A gebralc attack: et his invarisnt, egarded o o function of the monmalsed pecods sy
of the abelian integrals attached to the curve, be uniform.

‘There seems to be an unusually rich variety of geometric entities which
center about this normal curve. Some of these have received independent
investigation. It is the purpose of this series of abstracts to indicate a
number of new relations among these various entities and to connect each
with the normal sextic F. The methods employed are in the main geo-
metric. Direct algebraic attack on problems which contain nine irremov-
able constants, or moduli, is difficult. However much information is
gained by a free use of algebraic forms containing sets of variables drawn
from different domains. Both finite and infinite discontinuous groups
are utilized at various times.

Coble, A. B. (1921). Geometric Aspects of the Abelian Modular Functions of Genus
Four (1). Proceedings of the National Academy of Sciences.

Algebraic attack? (2/3)

Algebraic Attacks on Stream Ciphers with
Linear Feedback

Nicolas T. Courtois' and Willi Meier?

! Cryptography Rescarch, Schlumberger Smart Cards, 36-38 rue de la Princesse,
P 45, F-78430 T Clodex, France, org
2 FH Aargau, CH-5210 Windisch, Switzerland, neierw@fh-argau.ch

Abstract. A classical construction of stream ciphers is to combine

several LFSRs and a highly non-linear Boolean function /. Their

security is usually analysed in terms of correlation attacks, that can

be scen as solving a system of multivariate linear cquations, true

with some probability. At ICISC'02 this approach is extended to

Al H k‘) systems of higher-degree multivariate equations, and gives an attack
gebraic attack: 3o Tpos o Crpine submiodon, T this ok e by
is found by solving an overdefined system of algebraic equations. In

this paper we show how to substantially lower the degree of these

equations by multiplying them by well- chosen nultivariate polynomials.

Thus we are able to break Toyocrypt in 2% CPU clocks, with only

20 Khytes of keystream, the fastest nnmk proposed so far. We also

successfully attack the Nessie submission LILI-128, within 27 CPU

clocks (not the fastest attack known). In general, we show that if the

Boolean function uses only a small subset (e.g. 10) of state/LFSR

bits, the cipher ean be broken, whatever is the Boolean function

used (worst case). Our new general algebraic atfack breaks stream

ciphers satisfying all the previously known design criteria in at most

the square oot of the complexity of the previously known generic attack.

Courtois, N. T, & Meier, W. (2003, May). Algebraic attacks on stream ciphers with
linear feedback. EUROCRYPT'03.

Algebraic attack? (3/3)

Algebraic attack?

2. Unbalanced Oil and Vinegar Scheme

The most interesting type of one-way function used in multivariate cryptography
is based on the evaluation of a set of algebraic polynomials p = (p1 (21, .,), -
() € Koy, .o x,]™, namely :
m = (mi,...,mn) € K" — p(m) = (pi(m), .., pm(m)) € K™

The mathematical hard problem underlying this one-
Polynomial System Solving (PoSSo)

INSTANCE : polynomials pi(z1. .
QUESTION : Does there exists

ay function is :

(@) of Kla, ...,z

Jerns
P21y 20) =0,

[AC—

Bettale, L., Faugere, J. C, & Perret, L. (2012, July). Solving polynomial systems over
finite fields: improved analysis of the hybrid approach. ISSAC.

Algebraic attack = Writing equations + external solver
= POlynomial System + Solving

Algebraic attack = Writing equations + external solver
= POlynomial System + Solving

From a modern symmetric cryptography perspective

Should we care?

Algebraic attack = Writing equations + external solver
= POlynomial System + Solving

From a modern symmetric cryptography perspective

Should we care? .. Clearly yes

How should we care?

Algebraic attack = Writing equations + external solver
= POlynomial System + Solving

From a modern symmetric cryptography perspective

Should we care? .. Clearly yes

How should we care? ... by systemizing the knowledge we have

Algebraic attack = Writing equations + external solver
= POlynomial System + Solving

From a modern symmetric cryptography perspective

Should we care? .. Clearly yes
How should we care? ... by systemizing the knowledge we have
Conclusion

We need to greatly simplify the study of:
I what PoSSo techniques are, and how efficient they are

the polynomial systems arising from symmetric cryptanalysis

Outline

E} Intro: What do we call an algebraic attack?
What is a PoSSo-based Attack?
The More Complicated Case of “Real” PoSSo

Where to go from here?

6/28

; Attacking Elisabett
What is a PoSSo-based Attack? Atiacking Etisevet
Outline of an attack

Security Arguments

Plan of this Section

What is a PoSSo-based Attack?

6/28

Attacking Elisabeth

Plan of this Section

What is a PoSSo-based Attack?
m Attacking Elisabeth

6/28

Attacking Elisabeth

The particular case of Elizabeth (1/2)

Elisabeth v 4 PRNG ‘ ‘ Key register K ‘

Implements a “filter K//
permutator”

m Key register is never 5

modified
m Optimized for TFHE

m Low multiplicative
depth: Fis of low
degree ciphertext

Fig. 1: The group filter permutator design

Fig. 2: Elisabeth-4’s 5 to 1 inner function.

7/28

Attacking Elisabeth

The particular case of Elisabeth (2/2)

Basic Linearization

si = F(xo, ...X¢)

=2 =2 eun

uclky j uclky

vy is known, both x; and P, must be recovered.

8/28

Attacking Elisabeth

The particular case of Elisabeth (2/2)

Basic Linearization

si = F(xo, ...X¢)

=2 =2 eun

uclky j uel?]

vy is known, both x; and P, must be recovered.
If the number of equations is high enough,
this can be solved using basic linear algebra!

8/28

Attacking Elisabeth

The particular case of Elisabeth (2/2)

Basic Linearization Improvement

E Careful analysis of the ANF means there
are fewer unknowns

si = F(xo, ...X¢)
Better algorithm than Gaussian

- Z Qu ij’.’f = Z Py elimination

uelr] J uely]

vy is known, both x; and P, must be recovered.
If the number of equations is high enough,
this can be solved using basic linear algebra!

8/28

hat do g ?
What is a PoSSo-based Attack?

Attacking Elisabeth
he More Comp dC of “Re

The particular case of Elisabeth (2/2)

Basic Linearization Improvement

E Careful analysis of the ANF means there

are fewer unknowns
si = F(xo, ...X¢) _ _
o Better algorithm than Gaussian
- Z Qu ij - Z Py elimination
uelr] J uely]
i Model Time Data Memory

vy is known, both x; and P, must be recovered. (operations) (ibbles) (bits)
a a g Known IV gt 218 287

If the number of equations is high enough, B piis i oo
this can be solved using basic linear algebra! Known IV 2 2 2

Known IV 2 2% 27

Chosen IV 258 257 2%

8/28

Outline of an attack

Plan of this Section

What is a PoSSo-based Attack?

m Outline of an attack

8/28

Attacking Elisabeth

" 3 o g
What is a PoSSo-based Attack? Outline of an attack
Security Arguments

The Steps of an “Algebraic Attack”

Write a system of equations.

9/28

Attacking Elisabeth

" 3 o g
What is a PoSSo-based Attack? outline of an attack
Security Arguments

The Steps of an “Algebraic Attack”

Write a system of equations.

Solve system. If the system is completely linear, trivial.
If not, maybe linearize?

9/28

Attacking Elisabeth

" 3 o g
What is a PoSSo-based Attack? outline of an attack
Security Arguments

The Steps of an “Algebraic Attack”

Write a system of equations.

Solve system. If the system is completely linear, trivial.
If not, maybe linearize? Or something else!

9/28

Attacking Elisabeth

" 3 o g
What is a PoSSo-based Attack? outline of an attack
Security Arguments

The Steps of an “Algebraic Attack”

Write a system of equations.

Solve system. If the system is completely linear, trivial.
If not, maybe linearize? Or something else!

Deduce attack from result. (e.g. recover secret key from variable assignment)

9/28

Attacking Elisabeth

i ¥ 5 A g
What is a PoSSo-based Attack? Outline of an attack
Security Arguments

The Steps of an “Algebraic Attack”

Initial Cryptanalysis. Deduce a system of equations as simple as possible from the intended
attack.

Write a system of equations.

Solve system. If the system is completely linear, trivial.
If not, maybe linearize? Or something else!

Deduce attack from result. (e.g. recover secret key from variable assignment)

9/28

Security Arguments

Plan of this Section

What is a PoSSo-based Attack?

m Security Arguments

9/28

we call an algebraic attack?
What is a PoSSo-| based Attack?

The More Compl

Security Arguments

A failed argument

would be more costly in this context. On a filtered LFSR the security estimation is
O(Dlog*(D) + EDlog(D) + E*) where D = Y25 (V) and E = S99 (V).
This estimation will be used as an indicator rather than a sharp limit, considering that
the complexity of the best attack of the algebraic kind would lie between this (too low)
bound and the (too high) one given by the algebraic attack of Courtois-Meier.

10/28

call an algebraic attack?
What is a PoSSo-| based Attack7

Security Arguments

A failed argument

would be more costly in this context. On a filtered LFSR the security estimation is
O(Dlog*(D) + EDlog(D) + E*) where D = Y25 (V) and E = S99 (V).
This estimation will be used as an indicator rather than a sharp limit, considering that
the complexity of the best attack of the algebraic kind would lie between this (too low)
bound and the (too high) one given by the algebraic attack of Courtois-Meier.

What went wrong?

H Wrong assumptions about the relevant metric: degree vs. number of possible monomials

Attack complexity was further lowered using sophisticated (but still off-the-shelf)
algorithms (block Wiedemann)

10/28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

Plan of this Section

The More Complicated Case of “Real” PoSSo

10/28

ed
e of “Real” PoSSo

Definition

pi(x, - -

Pk—1(X1, ..
Pl .

The More Complicated Cas
Vhere to g m here?

Polynomial System Solving

.,XN) =0
.,XN) =0
.,XN) =0

1/28

The More Complicated Case
Where t

Definition

Polynomial System Solving

p1(X17' . '7XN) =0

—
Pk—1(x1; .., xy) = 0 PoSSo
pk(x1, ..., xy) =0 magic!

1/28

The More Compli

Definition

Polynomial System Solving

pi(xi, .. xn) =0

X1 =0Qq
—
pk—1(X17 .. '7XN) =0 PoSSo XN—1 = CN—1
pk(x1, ..., xy) =0 magic!

XN = CN
Here, we suppose that there is a finite, small number of solutions (e.g. not a full vector space).

1/28

From Cryptanalysis to a System of Equations

e of “Real” PoSSo
retog m here?

The More Complicated Cas

Plan of this Section

The More Complicated Case of “Real” PoSSo
m From Cryptanalysis to a System of Equations

1/28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

Symmetric Cryptanalysis

CICO-1

12/28

From Cryptanalysis to a System of Equations

The More Complica

Symmetric Cryptanalysis

CICO-1

and also...

CICO-k, limited birthday, actual preimages

12/28

From Cryptanalysis to a System of Equations

The More Complica

Symmetric Cryptanalysis

CICO-1

and also...

CICO-k, limited birthday, actual preimages

and also...
block/stream cipher key recovery
Even more cases!

Variety in solving techniques is matched by an even greater variety in attack type

12/28

From Cryptanalysis to a System of Equations

Where 0

CICO-1for a Permutation (Naive case)

Xo ——) Fg feereremiieeed g —3 F —3 X eeeeeneen NFrAf—> Xr

Naive Encoding

Xo :(777?,0)
Sub-variables x;
for each round; Xip1 = Fi(x;)
Xi = (Xi,0, -y Xi,0—1) o =(7,..7,0)

13/28

From Cryptanalysis to a System of Equations

Where 0

CICO-1for a Permutation (Naive case)

Xo ——) Fg feereremiieeed g —3 F —3 X eeeeeneen NFrAf—> Xr

Naive Encoding

xo =(?,..,7,0) Xo =(?,..,7,0)
Sub-variables x;
for each round; Xit1 = Fi(x;) F'(xi, xig1) =0
Xi = (Xi,0y -y Xi0—
(,0 £ 1) XR = (77..,?70) XR = (?”7’0)

13/28

From Cryptanalysis to a System of Equations

Limited Birthday Distinguisher (via Rebound Attack)

Goal: find (x, x") such that

x+x ev fx)+f(xX)ew

Rebound Attack

]—)[]—) Generate a lot of pair inner
values y, y/

Inhound

Hope that they propagate to
Outbound \ , Outbound gOOd X, XI, f(X), f(X/)

Step 1. (inbound) can be done by solving a system!

14/28

POlynomial System SOlving Techniques

The More Complicated Case
Where t

Plan of this Section

The More Complicated Case of “Real” PoSSo

m POlynomial System SOlving Techniques

14/28

POlynomial System SOlving Techniques

The More Complicated Case
Where t

Generic System Solving: Steps and Tools

pi(xi, .. xw) =0

pk—1(x17 .. 'aXN) =0
Pk, xn) = O
1. Define system

The Tools Used

SAGE Open source, mostly reliable...

15/28

POlynomial System SOlving Techniques

The More Compli

Generic System Solving: Steps and Tools

pi(xi, .. xw) =0

pk—1(x17 .. 'aXN) =0
Pk, xn) = O
1. Define system

The Tools Used

SAGE Open source, mostly reliable... but sloooow

15/28

POlynomial System SOlving Techniques

The More Compli

Generic System Solving: Steps and Tools

pi(x, .., xy) =0 gi1(x1,. .., xy) =0

Pk—1(, .., xy) =0 gr—1(X1, - xy) =0
pk(xh"'aXN):o gn(xh"';XN):o
1. Define system 2. Find a GB (F4/F5)
The Tools Used
SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible...

15/28

POlynomial System SOlving Techniques

The More Complicated Case
-

Generic System Solving: Steps and Tools

pi(x, .., xy) =0 gi1(x1,. .., xy) =0

Pk—1(, .., xy) =0 gr—1(X1, - xy) =0
pulirs) =0 U gularse.oyxu) = 0
1. Define system 2. Find a GB (F4/F5)
The Tools Used
SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible..but Open source implementations hard to find, big difference
in efficiency between public/proprietary implementations.

15/28

POlynomial System SOlving Techniques

The More Complicated Case
-

Generic System Solving: Steps and Tools

pi(x, .., xy) =0 gi1(x1,. .., xy) =0

Pk—1(, .., xy) =0 gr—1(X1, - xy) =0
Pty o) =0 L guletyeeox) = 0
1. Define system 2. Find a GB (F4/F5)

The Tools Used

SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible..but Open source implementations hard to find, big difference
in efficiency between public/proprietary implementations.
but things are getting better!

15/28

POlynomial System SOlving Techniques

The More Complicated Case
-

Generic System Solving: Steps and Tools

p1(X17...,XN):O g1(X1,...,XN):O g‘T(Xh'--yXN):O

Pr—1(X1, .., xy) =0 gr—1(x1,..,xy) =0 gn_1(xnv—1,xy) =0
pr(x1, .. xy) =0 gx(X,..,xy) =0 gn(xy) =0
1. Define system 2. Find a GB (F4/F5) 3. Change order to lex
The Tools Used
SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible..but Open source implementations hard to find, big difference
in efficiency between public/proprietary implementations.
but things are getting better!

FGLM No “practical” issues...

15/28

POlynomial System SOlving Techniques

Generic System Solving: Steps and Tools

p1(X17...,XN):O g1(X1,...7XN):O g‘T(Xh'--yXN):O

Pr—1(X1, .., xy) =0 gr—1(x1,..,xy) =0 gn_1(xnv—1,xy) =0
Pk(Xs -) = 0 9u(xs--xn) =0 Lgjla) =0
1. Define system 2. Find a GB (F4/F5) 3. Change order to lex
The Tools Used
SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible..but Open source implementations hard to find, big difference
in efficiency between public/proprietary implementations.
but things are getting better!

FGLM No “practical” issues... but lots of variants with very different complexities

15/28

POlynomial System SOlving Techniques

Generic System Solving: Steps and Tools

p1(X17...,XN):O g1(X1,...7XN):O g‘T(Xh'--yXN):O
: : : gn(xn) =0 = xy
Pr—1(X1, .., xy) =0 gr—1(x1,..,xy) =0 gn_1(xnv—1,xy) =0
pr(x1, .. xy) =0 gx(X,..,xy) =0 gn(xy) =0
1. Define system 2. Find a GB (F4/F5) 3. Change order to lex 4. Univariate root
The Tools Used
SAGE Open source, mostly reliable... but sloooow

F4/F5 What makes it possible..but Open source implementations hard to find, big difference
in efficiency between public/proprietary implementations.
but things are getting better!

FGLM No “practical” issues... but lots of variants with very different complexities

Berlekamp-Rabin Easy to re-implement 15/28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

A Better Solving Strategy (Sometimes): the Freelunch

,
p1(X1,...,XN):0 gg(X1,...,XN):0 91*(X1,...,XN):0 find xo
< *
pN_1(X‘|, ...,XN) =0 gN_1(X17 ...,XN) =0 gN—1(XN717XN) =0
pn(x1, ..oy xn) = 0 gn(x1, ..., xy) =0 gnv(xv) =0 deduce all x;:s
\
1. Encoding 2. Find Grébner basis 3. Change order 4. Final resolution

16/28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

A Better Solving Strategy (Sometimes): the Freelunch

.
pi(x1y .oy xn) = 0 g (x1,...,xn) =0 find xo
2
pnv—1(x1, ..., xy) =0 gn—1(xn—1,xv) =0
pn(x1, ..oy xn) = 0 gnv(xv) =0 deduce all x;:s
\
1. Encoding 2. Find Grébner basis 3. Change order 4. Final resolution

16/28

POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

A Better Solving Strategy (Sometimes): the Freelunch

p1(X1, ...,XN) =0

> Compute M,,
pN_1(X‘|, ...,XN) =0
pN(X17 ...,XN) =0
1. Encoding 2. Find Grobner basis 2. Get a matrix

From Cryptanalysis to a System of Equations

find xo

deduce all x;:s

4. Final resolution

16/28

POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

A Better Solving Strategy (Sometimes): the Freelunch

p1(X1, ...,XN) =0

> Compute M,,
pN_1(X‘|, ...,XN) =0
pN(X17 ...,XN) =0
1. Encoding 2. Find Grobner basis 2. Get a matrix

From Cryptanalysis to a System of Equations

det(xol — My,) =0

3. Partial resolution

16/28

From Cryptanalysis to a System of Equations
The More Complicated Case of “Real” PoSSo ?Olynow|al System SOlving Techniques
A Tale of Two Hash Functions

A Better Solving Strategy (Sometimes): the Freelunch

p1(X1, ...,XN) =0

3 Compute M,, det(xol — My,) =0
pN_1(X‘|, ...,XN) =0
pN(X17 ...,XN) =0
1. Encoding 2. Find Grébner basis 2. Get a matrix 3. Partial resolution

What do we need?

El Free Grobner basis
Compute M,,
Solve det(xg/ — My,) = 0

16/28

POlynomial System SOlving Techniques

The More Complica

A Better Solving Strategy (Sometimes): the Freelunch

p1(X1, ...,XN) =0

5 Compute M,, det(xol — M,,) =0
pN_1(X‘|, ...,XN) =0
pN(X17 ...,XN) =0
1. Encoding 2. Find Grébner basis 2. Get a matrix 3. Partial resolution

What do we need?

El Free Grobner basis: the FreeLunch
Compute M,,: regular Grobner basis arithmetic
Solve det(xo/ — M,,) = 0: dedicated algorithm

16/28

The More Complicated Case of “Real” PoSSo

The Resultant-based Approach

f(X1,X2) =0
g(X1,X2) =0

1. Define system

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

17/28

POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

The Resultant-based Approach

[a.y --ap ag 0

0
Syl(f, q) = 0 G,y -+ @y agp
YA 9) = s bs_y -+ bo 0
0 bs bs—1 -+ bo
f(X1,X2) =0 e
g(x1,x2) =0
1. Define system 2. Compute resultant

From Cryptanalysis to a System of Equations

17/28

POlynomial System SOlving Techniques

[a.y --ap ag 0

5
_ a ay agp
SS9 = b by - bo 0
L gl
0 bs bs—1 -+ bo
fX1 x2) =20
(’) y+6 F(X1) — O—>X1
g(x1,x2) =0
1. Define system 2. Compute resultant Univariate root

17/28

From Cryptanalysis to a System of Equations
The More Complicated Case of “Real” PoSSo ?Olynow|al System SOlving Techniques
A Tale of Two Hash Functions

Summary and complexities

“Basic” system solving (GB, FGLM, univariate solving)
max (C(GB), C(FGLM))
Estimating C(GB) needs dreq, C(FGLM) is easy

18/28

POlynomial System SOlving Techniques

The More Complica

Summary and complexities

“Basic” system solving (GB, FGLM, univariate solving)
max (C(GB), C(FGLM))
Estimating C(GB) needs dreg, C(FGLM) is €aSY (until you take e.g. sparcity into account)

Freelunch

= max (C(Eq gen.), C(Res))
| Estlmatlng C(Eq gen.) is hard but doable (and usually not that important)

m There are many different resolution algorithms

18/28

POlynomial System SOlving Techniques

The More Complica

Summary and complexities

“Basic” system solving (GB, FGLM, univariate solving)
max (C(GB), C(FGLM))
Estimating C(GB) needs dreg, C(FGLM) is €aSY (until you take e.g. sparcity into account)

Freelunch

= max (C(Eq gen.), C(Res))
| Estlmatlng C(Eq gen.) is hard but doable (and usually not that important)

m There are many different resolution algorithms

Resultants
Only works for a small number of actual unknowns,

complexity is non-trivial to estimate)28

POlynomial System SOlving Techniques

The More Complica

Summary and complexities

“Basic” system solving (GB, FGLM, univariate solving)
max (C(GB)’ C(FGLM)) Other techniques
Estimating C(GB) needs dreg, C(FGLM) is easy wntilyou take e sparcity into account) exist (e.g.Graeffe

transform)
Freelunch

= max (C(Eq gen.), C(Res))
| Estlmatlng C(Eq gen) iS hard but doable (and usually not that important) These
complexities are

There are many different resolution algorithm
m There are many different resolution algorithms theoretical

Resultants
Only works for a small number of actual unknowns,

complexity is non-trivial to estimate)28

POlynomial System SOlving Techniques

The More Complica

Summary and complexities

“Basic” system solving (GB, FGLM, univariate solving)
max (C(GB)’ C(FGLM)) Other techniques
Estimating C(GB) needs dreg, C(FGLM) is easy wntilyou take e sparcity into account) exist (e.g.Graeffe
transform)
Freelunch
= max (C(Eq gen.), C(Res))
| E5t|mat|ng C(Eq gen) iS hard but doable (and usually not that important) These
complexities are
theoretical
In practice, often
faster

m There are many different resolution algorithms

Resultants
Only works for a small number of actual unknowns,

complexity is non-trivial to estimate)28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

Example of a Discrepancy

30 T T
-
25 ///
20 e L
o0 _— o T
- 15 - — Macaulay
10 —— Macaulay | Approx. |
Approx. e
5 x True x True B
0 I S | I I I I
1 2 3 4 5 6 7 8 9 10 6 T 8 9 10
Number of rounds N Number of rounds N
(a) Feico- (b) Peico.

Figure 6: Theoretical bounds and experimental conjectures for the degree of regularity
dreg in Step (1) of a Grobner basis attack on Anemoi :]Fi —]Fi with e = 3. Experimental
data points for p € {232 — 209,254 — 353}.

Koschatko, K, Liiftenegger, R, & Rechberger, C. (2024). Exploring the six worlds of Grébner basis cryptanalysis: Application to Anemoi.

IACR Transactions on Symmetric Cryptology, 2024(4), 138-190.

19/28

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
ATale of Two Hash Functions

The More Complicated Case of “Real” PoSSo

Alternative Title

When POlynomial System SOlving
became a threat for symmetric cryptographers

Léo Perrin’

"Inria, France

ZKCS 2026, February 2026, Vienna

v d

: informatics g mathematics

20/28

ATale of Two Hash Functions

Plan of this Section

The More Complicated Case of “Real” PoSSo

m A Tale of Two Hash Functions

20/28

ATale of Two Hash Functions

Two Hash Functions vs. Rebound Attacks

Bak, A, Jazeron, G, Galissant, P, & Perrin, L. (2025). Attacking Split-and-Lookup-Based
Primitives Using Probabilistic Polynomial System Solving: Applications to Round-Reduced
Monolith and Full-Round Skyscraper. IACR Transactions on Symmetric Cryptology, 2025(3),

337-367. https://doi.org/10.46586/tosc.v2025.i3.337-367

How to combine S & L and x — x° to obtain permutations secure against
PoSSo-based attacks and e.g. differential attacks?

21/28

fhelticrs Comphcat\ei aft ATale of Two Hash Functions

Monolith and Skyscraper

Monolith

e (P12 2%)

B =l m 6 rounds

T T—] mSaL;x X2
1 1

22/28

sa

The More Complicated Case of “Real” PoSSo

re to go from here?

ATale of Two Hash Functions

Monolith and Skyscraper

Monolith

pe (21,2 22 1)
B

=l m 6rounds

T] mSa&L;x— X

T T T

" ps v

Skyscraper-vl

Ty TR

p > 2256

| 10 roun dS (but Feistel rounds ~ count for 1/2)

. 2
mS8L;x—x
(a) Overview of Skyscraper (b} Details of Siy1 05, () Details of Biy1 o Bi.

22/28

ti d Attack?

The More Complicated Case of “Real” PoSSo

Attacking Skyscraper-v1

ATale of Two Hash Functions

Pr=1 Pr = pin Inbound Pr = pout Pr=1
A as) =s) i H as) *
" Ay Oin,L Jout, L 0
Bars| |Bars Bars| [Bars
0 Oin, Rt (sout.l{ ouch
* & s : - Aout

Figure 4: Rebound attack on full Skyscraper-v1.

Table 2: Summary of the main attacks.

Primitive Attack type Rounds Complexity Psuccess
Collision (compression) 9 220-2 (practical) 0.9
Skyscraper-v1l
Limited birthday 10 2818 (practical) 1

23/28

The More Complicated Case of “Real” PoSSo

Attacking Monolith (1/2)

From Cryptanalysis to a System of Equations
POlynomial System SOlving Techniques
A Tale of Two Hash Functions

I I |
Table 3: Runtime for Grobner Basis and Change of Order algorithms.
e e e e
1 Parameters Grébner Basis Change of Order
T T r logyg k (log; #op.) (log, #op.)
omeres g 8 4 940 = 2638 63w+2 = 10.68
‘ 12 8 20w = 5614 126w+3 = 38.36
g 168 00 = 5614 126w+3 =
W 24 16 416w = 11677 2Bw+4 =
i s s G 12T 2w = 5614 1260+3 =
Comerte 8 <3 94w = 2638 63w+2 =
= 24 <15 4l6w = 11677 2Bw+d =
[I %6 <7 2w = 8614 126043 =
il il ol ol 64 12 4 653w = 18329 3dw+d2 =
resconarsats] ° 31 24 8 1356w = 38062 TIw+53 =
11 I
Comerete]
Table 4; Iu blue, upper bound from estimations. Tn the last column, the tuples rep
the different possibilities for (N, P(NS = 0)) where N is the overhead (number of PoS
v e e instances to solve).
1T 7 mlmmmm 1‘ Parameters Assumptions proba # PoSSo, failure probability) trade-offs
Conerate] r loggg ¢t k Difforential Lincar ¢ g probability
i w 5t o am (g gty @ g
0 I e e e
prrm—] PR
T T I - 1] M 2 e1s 1 1 .0
Conerete
T 11 T 1 11 ooy n I oy

24/28

From Cryptanalysis to a System of Equations
POlynomial System SOlv

ATale of Two Hash Functions

s Techniques

The More Complicated Case of “Real” PoSSo

Attacking Monolith (2/2)

Advantage, log scale
w
Advantage, log scale

2.5

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Variables Number of Variables

Figure 10: Plot of logarithm in base two of Figure 11: Plot of the logarithm in base two
the mean advantage for order lex. of the mean advantage for order degrevlex.

25/28

Where to go from here?

Plan of this Section

Where to go from here?

25/28

ase of “Real” Po
ere to go from here?

What have we learnt?

Many cryptanalyses become possible thanks to PoSSo (CICO-1 of course, but also rebound,
key recovery...)

26/28

What have we learnt?

Many cryptanalyses become possible thanks to PoSSo (CICO-1 of course, but also rebound,
key recovery...)

The exact complexity of the PoSSo step remains mysterious...

26/28

What have we learnt?

Many cryptanalyses become possible thanks to PoSSo (CICO-1 of course, but also rebound,
key recovery...)

The exact complexity of the PoSSo step remains mysterious...

.. and anyway this step can be approached in many different ways

26/28

here to go from h

What have we learnt?

Many cryptanalyses become possible thanks to PoSSo (CICO-1 of course, but also rebound,
key recovery...)

The exact complexity of the PoSSo step remains mysterious...
.. and anyway this step can be approached in many different ways

A piori sensible design strategies can fail completely (Skyscraper-V1, Anemoi...)

26/28

What do symmetric cryptographers need? (IMO)

Better ressources for symmetric cryptographers on PoSSo

m What are the relevant algorithms? Their complexities?
m What are potentially interesting papers/techniques in the PoSSO literature?

27/28

ase of “Real” Po
ere to go from here?

What do symmetric cryptographers need? (IMO)

Better ressources for symmetric cryptographers on PoSSo

m What are the relevant algorithms? Their complexities?
m What are potentially interesting papers/techniques in the PoSSO literature?

SoK? Wiki? “living” survey on github?

27/28

What do symmetric cryptographers need? (IMO)

Better ressources for symmetric cryptographers on PoSSo

m What are the relevant algorithms? Their complexities?
m What are potentially interesting papers/techniques in the PoSSO literature?

SoK? Wiki? “living” survey on github?
Better software for symmetric cryptographers on PoSSo

m Easily test different solving technique
m Implement sophisticated state-of-the-art algorithms

27/28

Where to go from here?

PESSCY conclusion

[README
Polynomial Equations Solving for Symmetric https://github.com/
Cryptography (PESSCY) bbdaumen/PESSCY
PESSCY is a tool developed to allow practical analysis of algebraic attacks using the Grobner basis theory
over Oriented-Arithmetisation Primitives. (by Baptiste Dau me n)

Installation of the tool

This tool must be used and installed in an environment containing SageMath.
To install it, run in the folder where you clone this repository:
(=

pip install -e .

28/28

https://github.com/bbdaumen/PESSCY
https://github.com/bbdaumen/PESSCY

Where to go from here?

PESSCY conclusion

[J README

Polynomial Equations Solving for Symmetric
Cryptography (PESSCY)

PESSCY is a tool developed to allow practical analysis of algebraic attacks using the Grobner basis theory
over Oriented-Arithmetisation Primitives.

Installation of the tool
This tool must be used and installed in an environment containing SageMath.
To install it, run in the folder where you clone this repository:

pip install -e . @

https://github.com/
bbdaumen/PESSCY

(by Baptiste Daumen)

Thank You!

28/28

https://github.com/bbdaumen/PESSCY
https://github.com/bbdaumen/PESSCY

	Intro: What do we call an algebraic attack?
	What is a PoSSo-based Attack?
	Attacking Elisabeth
	Outline of an attack
	Security Arguments

	The More Complicated Case of ``Real'' PoSSo
	From Cryptanalysis to a System of Equations
	POlynomial System SOlving Techniques
	A Tale of Two Hash Functions

	Where to go from here?

