

Greek and Roman Gods in Symmetric-Key Crypto

Lorenzo Grassi

Eindhoven University of Technology, NL

February 2026

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

Recent Applications

Symmetric cryptography primitives may be needed in:

- secure multi-party computation (MPC),
- homomorphic encryption (HE),
- zero-knowledge proofs (ZK),

where

1. *details of the used symmetric algorithm may influence the protocols efficiency;*
2. *many of such protocols are naturally defined over $(\mathbb{F}_p)^n$ for a large prime integer p (e.g., $p \approx 2^{32}, 2^{64}$, or 2^{256}).*

Cost Metric of MPC-/HE-/ZK-Friendly Schemes

Demand of new *specific* symmetric primitives over *prime fields* for these new applications!

Rough Cost Metric:

- Linear/Affine functions: *almost free*;
- Non-linear functions: *expensive*.

(*Important:* the size p of the field does not impact the cost in these MPC/HE/ZK applications!)

Cost Metrics for ZK (1/2)

Focusing on Zero-Knowledge (R1CS and AIR):

- *number of multiplications required during the verification process* as a good estimation of the complexity of a ZK-friendly scheme;
- roughly speaking, the *depth* and (slightly) the number of affine operations during the verification process impact the cost for AIR as well.

In Plonkup (Plonk + Plookup) and Binus:

- *look-up tables* are relatively cheap → different cost metric.

Cost Metrics for ZK (1/2)

Focusing on Zero-Knowledge (R1CS and AIR):

- *number of multiplications required during the verification process* as a good estimation of the complexity of a ZK-friendly scheme;
- roughly speaking, the *depth* and (slightly) the number of affine operations during the verification process impact the cost for AIR as well.

In Plonkup (Plonk + Plookup) and Binus:

- *look-up tables* are relatively cheap → different cost metric.

Cost Metrics for ZK – Examples (2/2)

Given x and $y = x^{p-2} \equiv 1/x$ over \mathbb{F}_p , verified via

$$\forall x, y \neq 0 : \quad x \cdot y = 1.$$

Given x and $y = x^{1/d}$ over \mathbb{F}_p s.t. $\gcd(d, p-1) = 1$, then verified via

$$y^d - x = 0.$$

(Note: if d is small, then $1/d$ is huge! E.g., $d = 3$ and $1/d = (2p-1)/3$.)

Cost Metrics for ZK – Examples (2/2)

Given x and $y = x^{p-2} \equiv 1/x$ over \mathbb{F}_p , verified via

$$\forall x, y \neq 0 : \quad x \cdot y = 1.$$

Given x and $y = x^{1/d}$ over \mathbb{F}_p s.t. $\gcd(d, p - 1) = 1$, then verified via

$$y^d - x = 0.$$

(Note: if d is small, then $1/d$ is huge! E.g., $d = 3$ and $1/d = (2p - 1)/3$.)

The ZK-friendly Symmetric Crypto Zoo

Type 1

- Low-degree

$$y = x^d$$

- Fast in Plain
- Many rounds
- Often more constraints
- GMiMC, POSEIDON, NEPTUNE, POSEIDON2, ...

Type 2

- Low-degree equivalence

$$y = x^{1/d} \rightarrow x = y^d$$

- Slow in Plain
- Fewer rounds
- Fewer constraints
- Vision, Rescue, Grendel, GRIFFIN, Anemoi, Arion, ...

Type 3

- Lookup tables

$$y = \mathcal{T}[x]$$

- Fast in Plain
- Fewer rounds
- Constraints depend on proof system
- Reinforced Concrete, Tip5, Skyscraper, ...

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

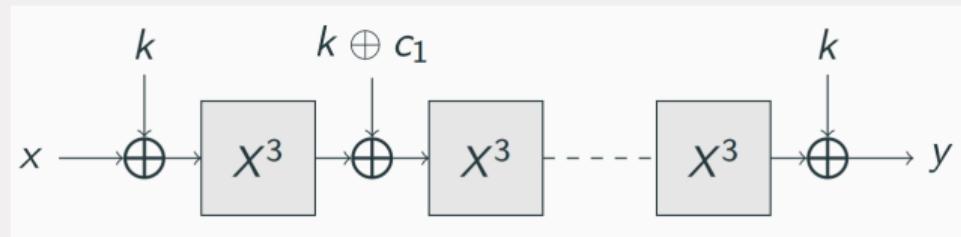
POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

MiMC Cipher



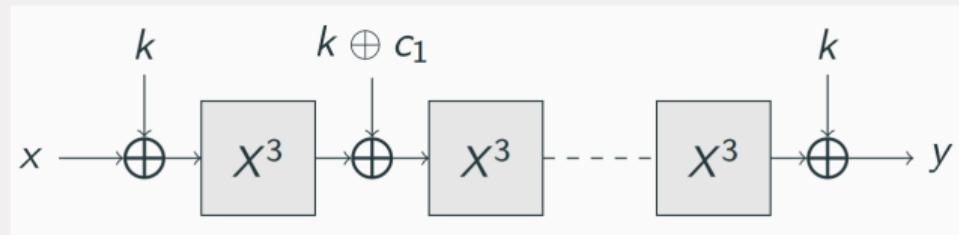
$(x \mapsto x^3$ is a permutation **iff** $n = 2n' + 1$ odd and $p \equiv_3 2$)

Assuming $p \approx 2^n$, large number of rounds: $\lceil \log_3 p \rceil \approx \lceil n \cdot \log_3 2 \rceil$.

E.g., for $p \approx 2^{128}$:

- AES: 10 rounds and ≈ 960 (MPC) multiplications;
- MiMC: 81 rounds and 162 (MPC) multiplications.

MiMC Cipher



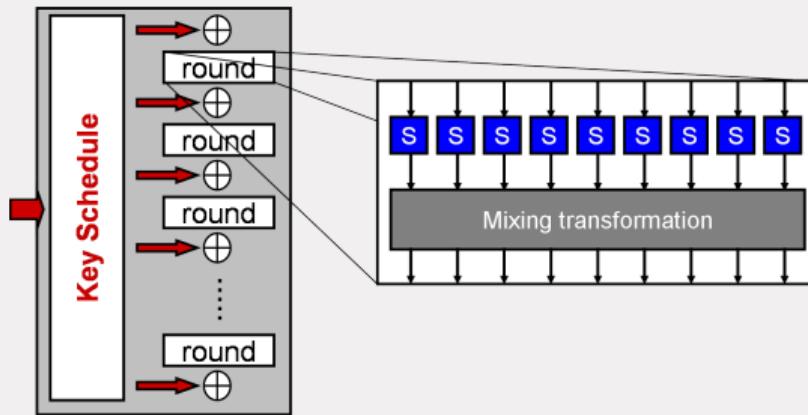
$(x \mapsto x^3$ is a permutation **iff** $n = 2n' + 1$ odd and $p \equiv_3 2$)

Assuming $p \approx 2^n$, large number of rounds: $\lceil \log_3 p \rceil \approx \lceil n \cdot \log_3 2 \rceil$.

E.g., for $p \approx 2^{128}$:

- AES: 10 rounds and ≈ 960 (MPC) multiplications;
- MiMC: 81 rounds and 162 (MPC) multiplications.

Partial-SPN Symmetric Primitives



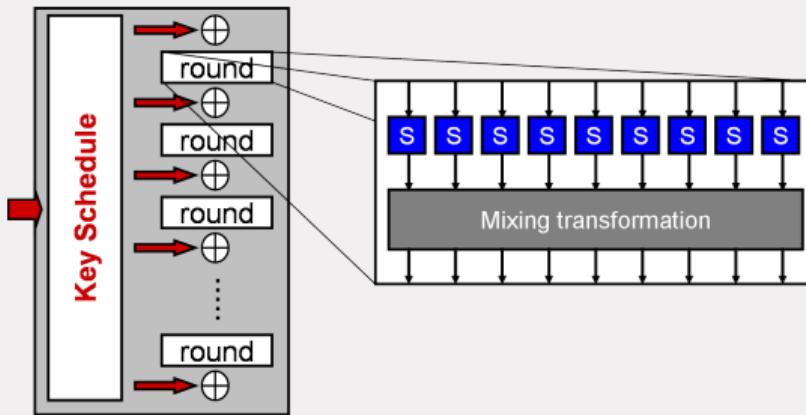
Idea: Move from *full S-Box layer*

$$\mathcal{S}_F(x) = [S(x_1) \parallel S(x_2) \parallel \dots \parallel S(x_t)]$$

to *Partial S-Box layer*

$$\mathcal{S}_P(x) = [S(x_1) \parallel x_2 \parallel \dots \parallel x_t].$$

Partial-SPN Symmetric Primitives



Idea: Move from *full S-Box layer*

$$\mathcal{S}_F(x) = [S(x_1) \parallel S(x_2) \parallel \dots \parallel S(x_t)]$$

to *Partial S-Box layer*

$$\mathcal{S}_P(x) = [S(x_1) \parallel x_2 \parallel \dots \parallel x_t].$$

P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:

- cheaper to compute than SPN
- one S-Box per round is sufficient for increasing the overall degree, crucial for preventing (some) algebraic attacks;

but

- guarantee security of P-SPN against statistical attacks is harder than for SPN: the "wide-trail" design strategy does not apply, and ad-hoc security argument must be provided.

Examples: attacks against the P-SPN schemes Zorro (variant of AES) and LowMC.

P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:

- cheaper to compute than SPN
- one S-Box per round is sufficient for increasing the overall degree, crucial for preventing (some) algebraic attacks;

but

- guarantee security of P-SPN against statistical attacks is harder than for SPN: the "wide-trail" design strategy does not apply, and ad-hoc security argument must be provided.

Examples: attacks against the P-SPN schemes Zorro (variant of AES) and LowMC.

Recall: Wide-Trail Design Strategy (AES-Like Design)

- Design strategy for preventing differential (and linear) attacks;
- **Goal:** minimize probability of any differential characteristic $\Delta_I \rightarrow \Delta_O$:

$$\frac{|\{x \mid E_k(x + \Delta_I) - E_k(x) = \Delta_O\}|}{p^t};$$

- Remember: only the S-Boxes impact such probability;
- **Idea:** choose linear layers that activate as many S-Boxes as possible, e.g., by instantiating them with "Maximum Distance Separable" (MDS) matrices.

Recall: Wide-Trail Design Strategy (AES-Like Design)

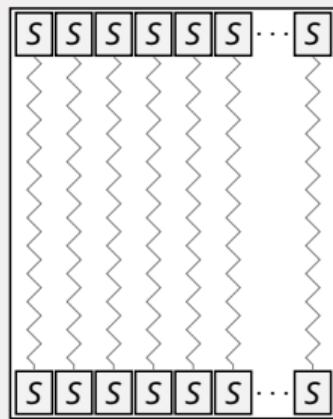
- Design strategy for preventing differential (and linear) attacks;
- **Goal:** minimize probability of any differential characteristic $\Delta_I \rightarrow \Delta_O$:

$$\frac{|\{x \mid E_k(x + \Delta_I) - E_k(x) = \Delta_O\}|}{p^t};$$

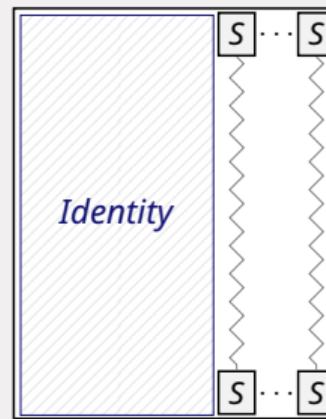
- Remember: only the S-Boxes impact such probability;
- **Idea:** choose linear layers that activate as many S-Boxes as possible, e.g., by instantiating them with "Maximum Distance Separable" (MDS) matrices.

"Hades" Strategy

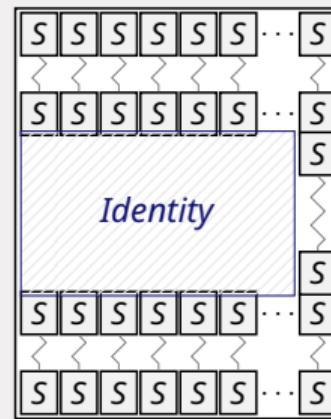
How to reduce number of non-linear operations & guarantee security with simple/elegant argument?



(a) SPN

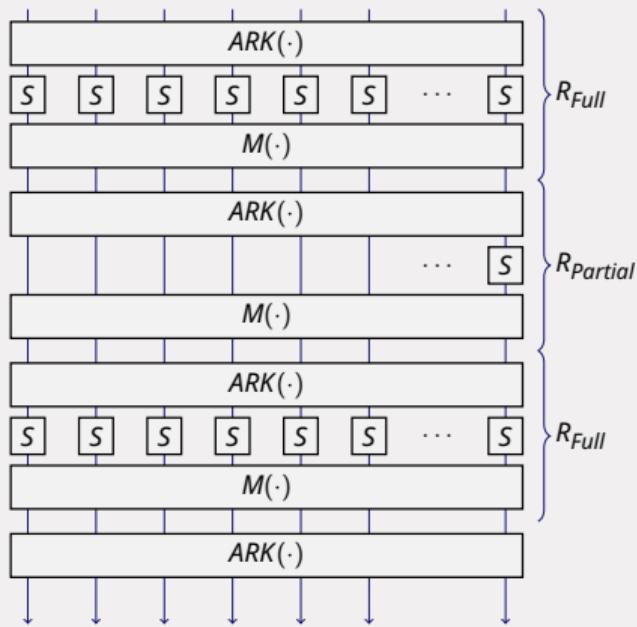


(b) P-SPN



(c) "Hades" strategy

The Block Cipher HADESMIMC



- $S(x) = x^d$ where $\gcd(d, p - 1) = 1$;
- Linear layer: multiplication with a MDS matrix in $\mathbb{F}_p^{t \times t}$;
- Subkeys defined via an affine map applied to the master key;
- Number of rounds ($\kappa \approx \log_2(p)$):

$$R_F = 2 \cdot R_f = 6,$$

$$R_P \approx \log_d(p)$$

Overview of Security Analysis

- Key-guess: possible only for a single round (due to the size of the key);
- Security against differential/linear attacks: **external full rounds** only, due to Wide-Trail design strategy:
 - ▶ $\text{DP}_{\max}(x \mapsto x^d) = (d - 1)/p$ and $t + 1$ S-Boxes active every 2 rounds;
 - ▶ each differential trail has probability $\left(\frac{d-1}{p}\right)^{r \cdot (t+1)/2} \ll 2^{-\kappa}$ for $r \geq 4$;
- Security against MitM interpolation attack: maximum degree is mostly achieved via the **internal partial rounds**;
- Security against Gröbner Basis/factorization attack: combination of internal and external rounds.

Overview of Security Analysis

- Key-guess: possible only for a single round (due to the size of the key);
- Security against differential/linear attacks: **external full rounds** only, due to Wide-Trail design strategy:
 - ▶ $\text{DP}_{\max}(x \mapsto x^d) = (d - 1)/p$ and $t + 1$ S-Boxes active every 2 rounds;
 - ▶ each differential trail has probability $\left(\frac{d-1}{p}\right)^{r \cdot (t+1)/2} \ll 2^{-\kappa}$ for $r \geq 4$;
- Security against MitM interpolation attack: maximum degree is mostly achieved via the **internal partial rounds**;
- Security against Gröbner Basis/factorization attack: combination of internal and external rounds.

Overview of Security Analysis

- Key-guess: possible only for a single round (due to the size of the key);
- Security against differential/linear attacks: **external full rounds** only, due to Wide-Trail design strategy:
 - ▶ $\text{DP}_{\max}(x \mapsto x^d) = (d - 1)/p$ and $t + 1$ S-Boxes active every 2 rounds;
 - ▶ each differential trail has probability $\left(\frac{d-1}{p}\right)^{r \cdot (t+1)/2} \ll 2^{-\kappa}$ for $r \geq 4$;
- Security against MitM interpolation attack: maximum degree is mostly achieved via the **internal partial rounds**;
- Security against Gröbner Basis/factorization attack: combination of internal and external rounds.

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

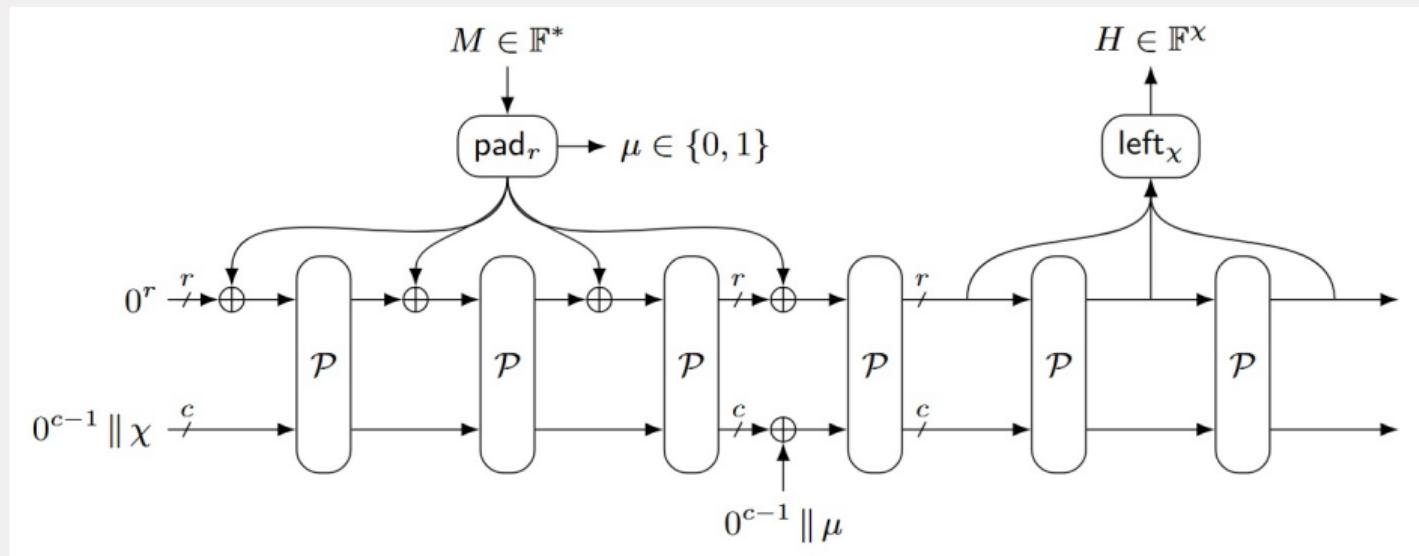
POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

Sponge Hash Function

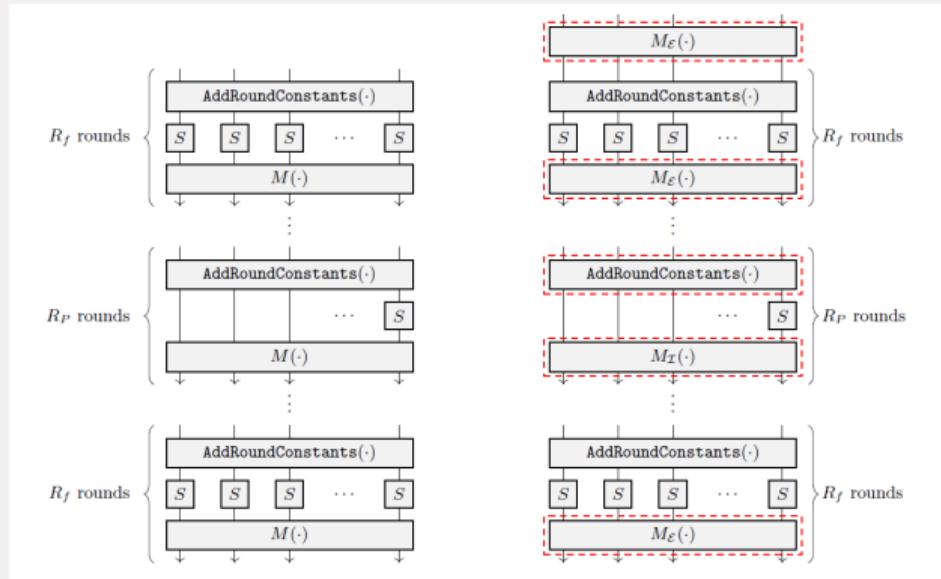


Assuming \mathcal{P} over \mathbb{F}_2^{c+r} is an ideal permutation: security up to $\min\{2^\chi, 2^{c/2}\}$.

- POSEIDON is a sponge hash function instantiated by the HADESMiMC permutation (that is, round keys are replaced by round constants).
- Number of rounds for POSEIDON is a bit different than the number of rounds of HADESMiMC (due to different attacks):
 - ▶ $4 + 4 = 8$ external full rounds (instead of 6);
 - ▶ partial rounds still $\approx \log_d(p)$.
- Low degree permutation: used both for evaluation and for verification.

POSEIDON2

Same number of rounds of POSEIDON, but (i) two different linear layers (one for external rounds & one for internal ones) + (ii) additional initial linear layer:



POSEIDON2: Linear Layer for Internal/Partial Rounds

- New matrix $M_{\mathcal{I}}$ in partial internal rounds:

$$\begin{bmatrix} \mu_{0,0} & 1 & 1 & \dots & 1 \\ 1 & \mu_{1,1} & 1 & \dots & 1 \\ 1 & 1 & \mu_{2,2} & \dots & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ 1 & 1 & 1 & \dots & \mu_{t-1,t-1} \end{bmatrix} ;$$

- Values $\mu_{0,0}, \dots, \mu_{t-1,t-1} \in \mathbb{F}_p \setminus \{0\}$ chosen such that:
 - ▶ the matrix is invertible;
 - ▶ no *infinitely-long* subspace trail for the internal rounds – see

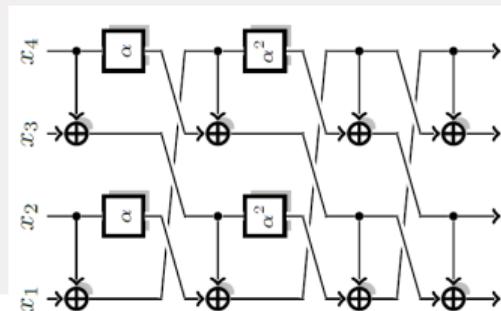
L. Grassi, C. Rechberger, M. Schafneger: "Proving Resistance Against Infinitely Long Subspace Trails: How to Choose the Linear Layer.". IACR ToSC 2021

POSEIDON2: Linear Layer for External/Full Rounds

Let $t = 4 \cdot t'$ be a multiple of 4. Then $M_{\mathcal{E}} \in \mathbb{F}_p^{t \times t}$ is defined as

$$M_{\mathcal{E}} = \begin{bmatrix} 2 \cdot M_{4 \times 4} & M_{4 \times 4} & \dots & M_{4 \times 4} \\ M_{4 \times 4} & 2 \cdot M_{4 \times 4} & \dots & M_{4 \times 4} \\ \vdots & \vdots & \ddots & \vdots \\ M_{4 \times 4} & M_{4 \times 4} & \dots & 2 \cdot M_{4 \times 4} \end{bmatrix},$$

where $M_{4 \times 4} \in \mathbb{F}_p^{4 \times 4}$ is a MDS matrix which can be efficiently evaluated as



Gröbner Basis + (External) Subspace Trail: POSEIDON(2)

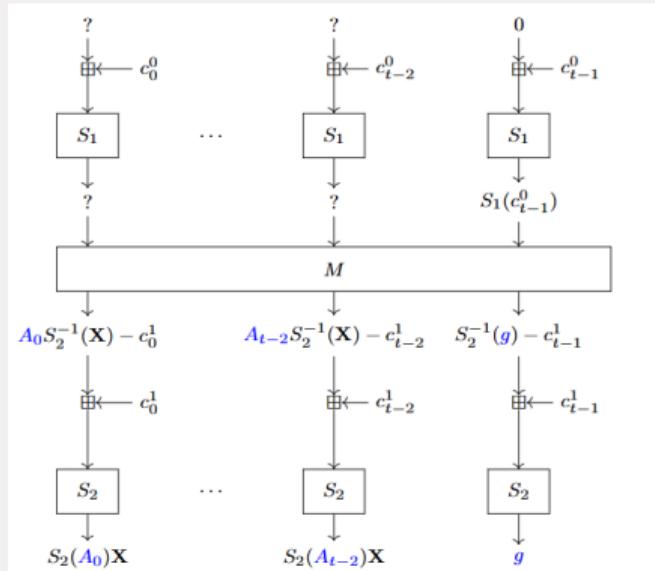


Figure: A. Bariant, C. Bouvier, G. Leurent, L. Perrin:
"Algebraic Attacks against Some Arithmetization-Oriented Primitives." IACR ToSC 2022

- Initial invertible S-Box layer does *not* provide extra security:

$$[S(x_0), \dots, S(x_{r-1}), S(\text{IV}_r), \dots, S(\text{IV}_{t-1})] \\ \rightarrow [x_0, \dots, x_{r-1}, \text{IV}_r, \dots, \text{IV}_{t-1}];$$

- Exploit degrees of freedom: skip extra full round (thanks also to homomorphic property of the S-Box $S(\alpha \cdot x) = S(\alpha) \cdot S(x)$).

Gröbner Basis + (Internal) Subspace Trail: POSEIDON(2) (1/2)

Exploit degrees of freedom to skip internal partial rounds:

- let $\mathcal{S}^{(\ell)}$ be

$$\mathcal{S}^{(\ell)} := \left\{ x \in \mathbb{F}^t \mid \forall i \in \{0, 1, \dots, \ell - 1\} : [M^i \times x]_0 = 0 \right\} ;$$

- given $x \in \mathcal{S}^{(\ell)} + \sigma$, then S-Boxes are constant (= inactive) for ℓ partial rounds;
- GB attack (for $1 \leq \ell \leq r - \chi \equiv \text{rate} - \text{digest}$):

$$x \in \mathbb{F}^t \xrightarrow{R_P^r \circ R_F^4(\cdot)} \mathcal{S}^{(\ell)} \xrightarrow{R_P^\ell(\cdot)} M^{\ell-1} \times \mathcal{S}^{(\ell)} \xrightarrow{R_F^4 \circ R_P^{r'}(\cdot)} h \in \mathbb{F}^\chi$$

where $r + \ell + r' = \text{number of partial rounds}$.

Gröbner Basis + (Internal) Subspace Trail: POSEIDON(2) (1/2)

Exploit degrees of freedom to skip internal partial rounds:

- let $\mathcal{S}^{(\ell)}$ be

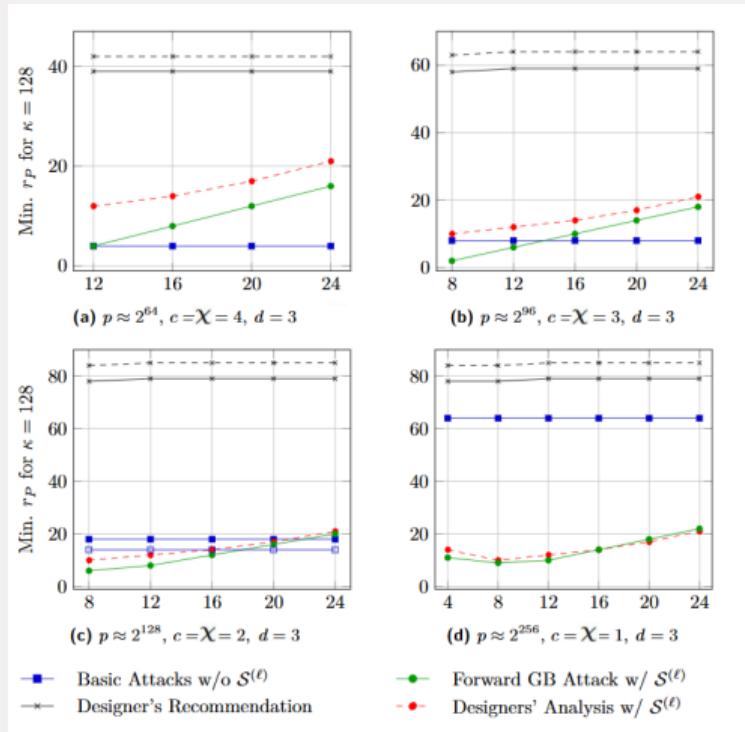
$$\mathcal{S}^{(\ell)} := \left\{ x \in \mathbb{F}^t \mid \forall i \in \{0, 1, \dots, \ell - 1\} : [M^i \times x]_0 = 0 \right\} ;$$

- given $x \in \mathcal{S}^{(\ell)} + \sigma$, then S-Boxes are constant (= inactive) for ℓ partial rounds;
- GB attack (for $1 \leq \ell \leq r - \chi \equiv \text{rate} - \text{digest}$):

$$x \in \mathbb{F}^t \xrightarrow{R_P^r \circ R_F^4(\cdot)} \mathcal{S}^{(\ell)} \xrightarrow{R_P^\ell(\cdot)} M^{\ell-1} \times \mathcal{S}^{(\ell)} \xrightarrow{R_F^4 \circ R_P^{r'}(\cdot)} h \in \mathbb{F}^\chi$$

where $r + \ell + r' = \text{number of partial rounds}$.

Gröbner Basis + (Internal) Subspace Trail: POSEIDON(2) (2/2)



POSEIDON(2)B over Binary Fields

Versions of POSEIDON/POSEIDON2 over binary fields $\mathbb{F}_{2^n}^t$ for $n \in \{32, 64, 128\}$ targeting Binus:

- matrix $M_{\mathcal{I}}$ for internal partial rounds as in POSEIDON2;
- matrix for external full rounds:
 - ▶ MDS for POSEIDONB;
 - ▶ $M_{\mathcal{E}}$ (as in POSEIDON2) for POSEIDON2B;
- number of rounds:
 - ▶ $\approx \log_d(2^n)$ internal partial rounds;
 - ▶ 4+4 external rounds for POSEIDONB;
 - ▶ 5+5 external rounds for POSEIDON2B.

Why Extra External Full Rounds for POSEIDON2B?

Potentially, skip “several” external full rounds in a GB attack due to $M_{\mathcal{E}}$:

- the subspace

$$\mathfrak{D} = \{(\delta_0, \delta_1, \delta_2, \delta_3, -\delta_0, -\delta_1, -\delta_2, -\delta_3, 0, 0, 0, 0, \dots, 0, 0, 0, 0) \in \mathbb{F}^t \mid \delta_0, \delta_1, \delta_2, \delta_3 \in \mathbb{F}\}$$

is an invariant for $M_{\mathcal{E}}$ with prob. 1 as $\text{circ}(2, 1, \dots, 1) \times [x, -x, 0, \dots, 0]^T = [x, -x, 0, \dots, 0]^T$;

- invariant over one full external round with probability $|\mathbb{F}|^{-4}$;
- still, possibility to exploit it together with the degrees of freedom of the hash function & homomorphic property of the S-Box to skip external full rounds.

Why Extra External Full Rounds for POSEIDON2B?

Potentially, skip “several” external full rounds in a GB attack due to $M_{\mathcal{E}}$:

- the subspace

$$\mathfrak{D} = \{(\delta_0, \delta_1, \delta_2, \delta_3, -\delta_0, -\delta_1, -\delta_2, -\delta_3, 0, 0, 0, 0, \dots, 0, 0, 0, 0) \in \mathbb{F}^t \mid \delta_0, \delta_1, \delta_2, \delta_3 \in \mathbb{F}\}$$

is an invariant for $M_{\mathcal{E}}$ with prob. 1 as $\text{circ}(2, 1, \dots, 1) \times [x, -x, 0, \dots, 0]^T = [x, -x, 0, \dots, 0]^T$;

- invariant over one full external round with probability $|\mathbb{F}|^{-4}$;
- still, possibility to exploit it together with the degrees of freedom of the hash function & homomorphic property of the S-Box to skip external full rounds.

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

Reducing the Number of Multiplications

$S(x) = x^d$ can be computed with $\lfloor \log_2(d) \rfloor$ squares + $\text{hw}(d) - 1$ multiplications (total of $\lfloor \log_2(d) \rfloor + \text{hw}(d) - 1 \geq 2$ for $d \geq 3$).

→ Each external round costs $(\lfloor \log_2(d) \rfloor + \text{hw}(d) - 1) \cdot t \geq 2 \cdot t$ multiplications!

Goal: construct new *invertible non-linear layers* over \mathbb{F}_p^t that

- cost t multiplications (e.g., of degree 2);
- “fully” non-linear (no Feistel/Lai-Massey);
- have (potentially) high-degree inverse.

Reducing the Number of Multiplications

$S(x) = x^d$ can be computed with $\lfloor \log_2(d) \rfloor$ squares + $\text{hw}(d) - 1$ multiplications (total of $\lfloor \log_2(d) \rfloor + \text{hw}(d) - 1 \geq 2$ for $d \geq 3$).

→ Each external round costs $(\lfloor \log_2(d) \rfloor + \text{hw}(d) - 1) \cdot t \geq 2 \cdot t$ multiplications!

Goal: construct new *invertible non-linear layers* over \mathbb{F}_p^t that

- cost t multiplications (e.g., of degree 2);
- “fully” non-linear (no Feistel/Lai-Massey);
- have (potentially) high-degree inverse.

SI-Lifting Functions \mathcal{S}_F (1/2)

Let $\mathcal{S} : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$ be a generic non-linear function:

$$\mathcal{S}(x_0, x_1, \dots, x_{n-1}) = y_0 \| y_1 \| \dots \| y_{n-1} \quad \text{where}$$
$$\forall i \in \{0, 1, \dots, n-1\} : \quad y_i := F_i(x_0, x_1, \dots, x_{n-1})$$

for certain $F_i : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$.

→ *Too many possible cases to analyze!*

Idea: focus on shift-invariant transformations over \mathbb{F}_p^n defined by a *single local update rule* $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$ for $1 \leq m \leq n$.

SI-Lifting Functions \mathcal{S}_F (1/2)

Let $\mathcal{S} : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$ be a generic non-linear function:

$$\mathcal{S}(x_0, x_1, \dots, x_{n-1}) = y_0 \| y_1 \| \dots \| y_{n-1} \quad \text{where} \\ \forall i \in \{0, 1, \dots, n-1\} : \quad y_i := F_i(x_0, x_1, \dots, x_{n-1})$$

for certain $F_i : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$.

→ *Too many possible cases to analyze!*

Idea: focus on shift-invariant transformations over \mathbb{F}_p^n defined by a *single local update rule* $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$ for $1 \leq m \leq n$.

SI-Lifting Functions \mathcal{S}_F (2/2)

The Shift Invariant (SI) lifting function $\mathcal{S}_F : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$ induced by $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$ is defined as

$$\begin{aligned}\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) &= y_0 \| y_1 \| \dots \| y_{n-1} \quad \text{where} \\ \forall i \in \{0, 1, \dots, n-1\} : \quad y_i &:= F(x_i, x_{i+1}, \dots, x_{i+m-1}).\end{aligned}$$

“Shift Invariant” property due to the fact that:

$$\Pi_j \circ \mathcal{S}_F = \mathcal{S}_F \circ \Pi_j$$

for each shift function $\Pi_i(x_0, x_1, \dots, x_{n-1}) = x_i \| x_{i+1} \| \dots \| x_{i+n-1}$.

SI-Lifting Functions \mathcal{S}_F (2/2)

The Shift Invariant (SI) lifting function $\mathcal{S}_F : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$ induced by $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$ is defined as

$$\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = y_0 \| y_1 \| \dots \| y_{n-1} \quad \text{where} \\ \forall i \in \{0, 1, \dots, n-1\} : \quad y_i := F(x_i, x_{i+1}, \dots, x_{i+m-1}).$$

“Shift Invariant” property due to the fact that:

$$\Pi_i \circ \mathcal{S}_F = \mathcal{S}_F \circ \Pi_i$$

for each shift function $\Pi_i(x_0, x_1, \dots, x_{n-1}) = x_i \| x_{i+1} \| \dots \| x_{i+n-1}$.

Example of SI-Lifting Functions over \mathbb{F}_2^n

See Joan Daemen's PhD Thesis ("*Cipher and Hash Function Design Strategies based on linear and differential cryptanalysis*"):

- given the chi function $\chi : \mathbb{F}_2^3 \rightarrow \mathbb{F}_2$:

$$\chi(x_0, x_1, x_2) = x_0 \oplus (x_1 \oplus 1) \cdot x_2,$$

then \mathcal{S}_χ over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 2) = 1$;

- given $F(x_0, x_1, x_2, x_3) = x_0 \oplus (x_1 \oplus 1) \cdot x_2 \cdot x_3$, then \mathcal{S}_F over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 3) = 1$;
- given $F(x_0, x_1, \dots, x_5) = x_1 \oplus (x_0 \oplus 1) \cdot (x_2 \oplus 1) \cdot x_3 \cdot (x_5 \oplus 1)$, then \mathcal{S}_F over \mathbb{F}_2^n is invertible for each $n \geq 6$.

Example of SI-Lifting Functions over \mathbb{F}_2^n

See Joan Daemen's PhD Thesis ("*Cipher and Hash Function Design Strategies based on linear and differential cryptanalysis*"):

- given the chi function $\chi : \mathbb{F}_2^3 \rightarrow \mathbb{F}_2$:

$$\chi(x_0, x_1, x_2) = x_0 \oplus (x_1 \oplus 1) \cdot x_2,$$

then \mathcal{S}_χ over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 2) = 1$;

- given $F(x_0, x_1, x_2, x_3) = x_0 \oplus (x_1 \oplus 1) \cdot x_2 \cdot x_3$, then \mathcal{S}_F over \mathbb{F}_2^n is invertible if and only if $\gcd(n, 3) = 1$;
- given $F(x_0, x_1, \dots, x_5) = x_1 \oplus (x_0 \oplus 1) \cdot (x_2 \oplus 1) \cdot x_3 \cdot (x_5 \oplus 1)$, then \mathcal{S}_F over \mathbb{F}_2^n is invertible for each $n \geq 6$.

Our Goal

Let

- $p \geq 3$;
- $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$ **quadratic**.

Given $S_F : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$ defined as before, that is,

$$S_F(x_0, x_1, \dots, x_{n-1}) = y_0 \| y_1 \| \dots \| y_{n-1} \quad \text{where}$$
$$\forall i \in \{0, 1, \dots, n-1\} : \quad y_i := F(x_i, x_{i+1}, \dots, x_{i+m-1}),$$

then

- is it possible to find F for which S_F is invertible?
- if yes, for any value of n and/or m ?

Main Result for $m = 2$

Theorem

Let $p \geq 3$ be a prime, let $m = 2$, and let $n \geq 2$. Let $F : \mathbb{F}_p^2 \rightarrow \mathbb{F}_p$ be a quadratic function. Given \mathcal{S}_F over \mathbb{F}_p^n :

- if $n = 2$, then \mathcal{S}_F is invertible if and only if

$$F(x_0, x_1) = \gamma_0 \cdot x_0 + \gamma_1 \cdot x_1 + \gamma_2 \cdot (x_0 - x_1)^2$$

for $\gamma_0 \neq \pm \gamma_1$;

- if $n \geq 3$, then \mathcal{S}_F is **never** invertible.

Sketch of the Proof – Case: $m = 2$ and $n \geq 3$ (1/2)

Collisions over \mathbb{F}_p^3 of the form

$$\mathcal{S}_F(0, x_0, x_1) = \mathcal{S}_F(0, x'_0, x'_1),$$

imply collisions over \mathbb{F}_p^n for each $n \geq 3$ of the form

$$\mathcal{S}_F(0, x_0, x_1, 0, 0, \dots, 0) = \mathcal{S}_F(0, x'_0, x'_1, 0, 0, \dots, 0).$$

Indeed, both are satisfied by

$$F(0, x_0) = F(0, x'_0), \quad F(x_0, x_1) = F(x'_0, x'_1), \quad F(x_1, 0) = F(x'_1, 0).$$

→ We limit ourselves to $n = 3$ and $\mathcal{S}_F(0, x_0, x_1) = \mathcal{S}_F(0, x'_0, x'_1)$.

Sketch of the Proof – Case: $m = 2$ and $n \geq 3$ (1/2)

Collisions over \mathbb{F}_p^3 of the form

$$\mathcal{S}_F(0, x_0, x_1) = \mathcal{S}_F(0, x'_0, x'_1),$$

imply collisions over \mathbb{F}_p^n for each $n \geq 3$ of the form

$$\mathcal{S}_F(0, x_0, x_1, 0, 0, \dots, 0) = \mathcal{S}_F(0, x'_0, x'_1, 0, 0, \dots, 0).$$

Indeed, both are satisfied by

$$F(0, x_0) = F(0, x'_0), \quad F(x_0, x_1) = F(x'_0, x'_1), \quad F(x_1, 0) = F(x'_1, 0).$$

→ We limit ourselves to $n = 3$ and $\mathcal{S}_F(0, x_0, x_1) = \mathcal{S}_F(0, x'_0, x'_1)$.

Sketch of the Proof – Case: $m = 2$ and $n \geq 3$ (2/2)

Necessary requirements for invertibility of \mathcal{S}_F :

- $\alpha_{2,0} + \alpha_{1,1} + \alpha_{0,2} = 0$;
- $\alpha_{1,0} + \alpha_{0,1} \neq 0$.

In the paper, collisions are proposed in order to cover all the cases just given. E.g., if $\alpha_{2,0}, \alpha_{1,1} \neq 0$ with $\alpha_{2,0} + \alpha_{1,1} + \alpha_{0,2} = 0$:

$$\mathcal{S}_F \left(0, \frac{\alpha_{0,2} \cdot \alpha_{1,0}}{\alpha_{1,1} \cdot \alpha_{2,0}} - \frac{\alpha_{0,1}}{\alpha_{1,1}}, x \right) = \mathcal{S}_F \left(0, \frac{\alpha_{0,2} \cdot \alpha_{1,0}}{\alpha_{1,1} \cdot \alpha_{2,0}} - \frac{\alpha_{0,1}}{\alpha_{1,1}}, -x - \frac{\alpha_{1,0}}{\alpha_{2,0}} \right)$$

for each $x \in \mathbb{F}_p$.

Main Result for $m = 3$ and $n \geq 5$

Theorem

Let $p \geq 3$ be a prime, let $m = 3$, and let $n \geq 5$. Let $F : \mathbb{F}_p^3 \rightarrow \mathbb{F}_p$ be any quadratic function. The SI-lifting function S_F over \mathbb{F}_p^n induced by F is **never invertible**.

- Strategy of the proof similar to the one just proposed for $m = 2$ and $n \geq 3$.
- *Different from the binary case*, for which S_F over \mathbb{F}_2^n can be invertible depending on $F : \mathbb{F}_2^3 \rightarrow \mathbb{F}_2$ and on n (e.g., χ).

NEPTUNE's External Rounds: Non-Linear Layer

Goal: modify the external rounds for *reducing the total number of multiplications* without decreasing the security.

- Given any quadratic $F : \mathbb{F}_p^{\leq 3} \rightarrow \mathbb{F}_p$, then S_F over $\mathbb{F}_p^{>5}$ is **not** invertible.
- Let $t = 2 \cdot t'$ even. Non-linear layer of NEPTUNE's external rounds via concatenation of S-Boxes S over \mathbb{F}_p^2 , defined as

$$S(x_0, x_1) = S' \circ \mathcal{A} \circ S'(x_0, x_1)$$

where (for $\gamma \neq 0$):

$$S'(x_0, x_1) = x_0 + (x_0 - x_1)^2 \parallel x_1 + (x_0 - x_1)^2,$$

$$\mathcal{A}(x_0, x_1) = \begin{bmatrix} \gamma \\ 0 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}.$$

NEPTUNE's External Rounds: Non-Linear Layer

Goal: modify the external rounds for *reducing the total number of multiplications* without decreasing the security.

- Given any quadratic $F : \mathbb{F}_p^{\leq 3} \rightarrow \mathbb{F}_p$, then S_F over $\mathbb{F}_p^{>5}$ is **not** invertible.
- Let $t = 2 \cdot t'$ even. Non-linear layer of NEPTUNE's external rounds via concatenation of S-Boxes S over \mathbb{F}_p^2 , defined as

$$S(x_0, x_1) = S' \circ A \circ S'(x_0, x_1)$$

where (for $\gamma \neq 0$):

$$S'(x_0, x_1) = x_0 + (x_0 - x_1)^2 \| x_1 + (x_0 - x_1)^2,$$

$$A(x_0, x_1) = \begin{bmatrix} \gamma \\ 0 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}.$$

NEPTUNE's External Rounds: Linear Layer

Given the state as an element of $\mathbb{F}_p^{t' \times 2} \equiv \mathbb{F}_p^{t/2 \times 2}$:

- apply the S-Boxes over \mathbb{F}_p^2 on each row;
- multiply each column by a $t' \times t'$ MDS matrix.

Not every MDS matrix is equally good! E.g., over \mathbb{F}_p^4 , given

$$M = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad M' = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},$$

the degree grows as 4, 14, 56, ... instead of $4, 4^2 = 16, 4^3 = 64, \dots$

→ conditions on the MDS matrices – see M. Urani and L. Grassi: “*Corrigendum to Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n – Application to Poseidon*”. IACR ToSC 2026.

NEPTUNE's External Rounds: Linear Layer

Given the state as an element of $\mathbb{F}_p^{t' \times 2} \equiv \mathbb{F}_p^{t/2 \times 2}$:

- apply the S-Boxes over \mathbb{F}_p^2 on each row;
- multiply each column by a $t' \times t'$ MDS matrix.

Not every MDS matrix is equally good! E.g., over \mathbb{F}_p^4 , given

$$M = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad M' = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},$$

the degree grows as 4, 14, 56, ... instead of $4, 4^2 = 16, 4^3 = 64, \dots$

→ conditions on the MDS matrices – see M. Urani and L. Grassi: "*Corrigendum to Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n – Application to Poseidon*". IACR ToSC 2026.

NEPTUNE versus POSEIDON (with $S(x) = x^5$)

Cost of t *multiplications* for computing S (versus $\geq 2 \cdot t$ for power maps).

Table: Comparison of POSEIDON and NEPTUNE – both instantiated with $d = 5$ – for the case $p \approx 2^{128}$ (or bigger), $\kappa = 128$, and several values of $t \in \{4, 8, 12, 16\}$.

	t	R_F	R_P & R_I	Multiplicative Complexity
POSEIDON ($d = 5$)	4	8	60	276 (+ 21.0 %)
NEPTUNE ($d = 5$)	4	6	68	228
POSEIDON ($d = 5$)	8	8	60	372 (+ 40.1 %)
NEPTUNE ($d = 5$)	8	6	72	264
POSEIDON ($d = 5$)	12	8	61	471 (+ 53.9 %)
NEPTUNE ($d = 5$)	12	6	78	306
POSEIDON ($d = 5$)	16	8	61	567 (+ 64.3 %)
NEPTUNE ($d = 5$)	16	6	83	345

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

What about the Non-Invertible Non-Linear Layer?

Let $p \geq 3$. Given any quadratic function $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$, then the SI-lifting function S_F over \mathbb{F}_p^n is **not** invertible if

- $m = 1, n \geq 1$;
- $m = 2, n \geq 3$;
- $m = 3, n \geq 5$.

It is trivial to find collisions for a hash function instantiated with such non-invertible quadratic functions!

Remark: we discourage the use of low-degree non-bijective components for designing symmetric primitives in which the internal state is not obfuscated by a secret.

What about the Non-Invertible Non-Linear Layer?

Let $p \geq 3$. Given any quadratic function $F : \mathbb{F}_p^m \rightarrow \mathbb{F}_p$, then the SI-lifting function S_F over \mathbb{F}_p^n is **not** invertible if

- $m = 1, n \geq 1$;
- $m = 2, n \geq 3$;
- $m = 3, n \geq 5$.

It is trivial to find collisions for a hash function instantiated with such non-invertible quadratic functions!

Remark: we discourage the use of low-degree non-bijective components for designing symmetric primitives in which the internal state is not obfuscated by a secret.

Non-Invertible Non-Linear Layer for Ciphers (1/2)

Let's use them for instantiating a cipher! The non-linear layer

$$[x_0, x_1, \dots, x_{n-1}] \mapsto [x_0^2, x_1^2, \dots, x_{n-1}^2]$$

over \mathbb{F}_p^n is **not** a good choice in general:

- number of collisions given by

$$\frac{(2 \cdot p - 1)^n - p^n}{p^n \cdot (p^n - 1)} \approx \frac{2^n - 1}{p^n - 1};$$

- *key-recovery attacks* can be potentially set up by exploiting the fact that $[x_0^2, x_1^2, \dots, x_{n-1}^2] = [y_0^2, y_1^2, \dots, y_{n-1}^2]$ if and only if $x_i = \pm y_i$.

Non-Invertible Non-Linear Layer for Ciphers (2/2)

Goal: Find the quadratic function $F : \mathbb{F}_p^2 \rightarrow \mathbb{F}_p$ such that

1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;
2. minimize the multiplicative cost of computing \mathcal{S}_F .

Such function is $F(x_0, x_1) = x_1^2 + x_0$ (or similar) for which

- the probability that a collision occurs at the output of \mathcal{S}_F over \mathbb{F}_p^n is

$$\frac{(p-1)^n}{p^n \cdot (p^n - 1)/2} \leq \frac{2}{p^n} \quad (\ll 1 \text{ for big } p);$$

- $\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = \mathcal{S}_F(y_0, y_1, \dots, y_{n-1})$ implies $x_i \neq y_i$ for all i .

Non-Invertible Non-Linear Layer for Ciphers (2/2)

Goal: Find the quadratic function $F : \mathbb{F}_p^2 \rightarrow \mathbb{F}_p$ such that

1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;
2. minimize the multiplicative cost of computing \mathcal{S}_F .

Such function is $F(x_0, x_1) = x_1^2 + x_0$ (or similar) for which

- the probability that a collision occurs at the output of \mathcal{S}_F over \mathbb{F}_p^n is

$$\frac{(p-1)^n}{p^n \cdot (p^n - 1)/2} \leq \frac{2}{p^n} \quad (\ll 1 \text{ for big } p);$$

- $\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = \mathcal{S}_F(y_0, y_1, \dots, y_{n-1})$ implies $x_i \neq y_i$ for all i .

From HadesMiMC to PLUTO

Idea: replace the non-linear layer $(x_0, x_1, \dots, x_{t-1}) \mapsto (x_0^d, x_1^d, \dots, x_{t-1}^d)$ in the external rounds with

$$(x_0, x_1, \dots, x_{t-1}) \mapsto (x_1^2 + x_0, x_2^2 + x_1, \dots, x_0^2 + x_{t-1}),$$

which costs t multiplications *independently of p*.

Security analogous to the one proposed for HADESMiMC. Main differences:

- collision probability at the output of PLUTO $\ll 2^{-\kappa}$;
- external rounds are not invertible, but only local inverses can be set up: we conjecture that $4 + 4 = 8$ external rounds are sufficient to prevent algebraic attacks in the backward direction.

From HadesMiMC to PLUTO

Idea: replace the non-linear layer $(x_0, x_1, \dots, x_{t-1}) \mapsto (x_0^d, x_1^d, \dots, x_{t-1}^d)$ in the external rounds with

$$(x_0, x_1, \dots, x_{t-1}) \mapsto (x_1^2 + x_0, x_2^2 + x_1, \dots, x_0^2 + x_{t-1}),$$

which costs t multiplications *independently of p*.

Security analogous to the one proposed for HADESMiMC. Main differences:

- collision probability at the output of PLUTO $\ll 2^{-\kappa}$;
- external rounds are not invertible, but only local inverses can be set up: we conjecture that $4 + 4 = 8$ external rounds are sufficient to prevent algebraic attacks in the backward direction.

Multiplicative Complexity (MPC): HadesMiMC versus PLUTO

Comparison between HADESMiMC (instantiated with $x \mapsto x^3$) and PLUTO for the case $p \approx 2^{128}$, $\kappa = 128$, and several values of $t \in \{4, 8, 12, 16\}$:

	t	R_F	R_P	Multiplicative Complexity
HADESMiMC ($d = 3$)	4	6	47	142 (+ 22.4 %)
	PLUTO	4	8	116
HADESMiMC ($d = 3$)	8	6	48	192 (+ 24.7 %)
	PLUTO	8	8	154
HADESMiMC ($d = 3$)	12	6	49	242 (+ 24.7 %)
	PLUTO	12	8	194
HADESMiMC ($d = 3$)	16	6	49	290 (+ 26.1 %)
	PLUTO	16	8	230

Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of POSEIDON: MiMC and HADESMiMC (for MPC)

POSEIDON, POSEIDON2 and POSEIDON(2)B

Variants of POSEIDON: NEPTUNE

Variants of HADESMiMC: PLUTO

Summary

Summary

- Several hash functions have been proposed for ZK: POSEIDON(2)/POSEIDON(2)B seem to be both competitive and secure;
- More cryptanalysis (especially, third-party cryptanalysis) is required to increase our confidence in the security:
 - ▶ Ethereum initiative/challenges;
- POSEIDON(2)/POSEIDON(2)B is not the end of the story: potential improvements in the design are possible!

Thanks for your attention!

Questions?

Comments?