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Recent Applications

Symmetric cryptography primitives may be needed in:
• secure multi-party computation (MPC),
• homomorphic encryption (HE),
• zero-knowledge proofs (ZK),

where
1. details of the used symmetric algorithm may influence the protocols efficiency;
2. many of such protocols are naturally defined over (Fp)n for a large prime integer

p (e.g., p ≈ 232, 264, or 2256).
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Cost Metric of MPC-/HE-/ZK-Friendly Schemes

Demand of new specific symmetric primitives over prime fields for these new
applications!

Rough Cost Metric:
• Linear/Affine functions: almost free;
• Non-linear functions: expensive.

(Important: the size p of the field does not impact the cost in these MPC/HE/ZK
applications!)
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Cost Metrics for ZK (1/2)

Focusing on Zero-Knoweldge (R1CS and AIR):
• number of multiplications required during the verification process as a good

estimation of the complexity of a ZK-friendly scheme;
• roughly speaking, the depth and (slightly) the number of affine operations

during the verification process impact the cost for AIR as well.

In Plonkup (Plonk + Plookup) and Binius:
• look-up tables are relatively cheap → different cost metric.
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Cost Metrics for ZK – Examples (2/2)

Given x and y = xp−2 ≡ 1/x over Fp, verified via

∀x, y ̸= 0 : x · y = 1 .

Given x and y = x1/d over Fp s.t. gcd(d, p − 1) = 1, then verified via

yd − x = 0 .

(Note: if d is small, then 1/d is huge! E.g., d = 3 and 1/d = (2p − 1)/3.)
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The ZK-friendly Symmetric Crypto Zoo

Type 1

• Low-degree

y = xd

• Fast in Plain

• Many rounds

• Often more con-
straints

• GMiMC, Poseidon,
Neptune, Poseidon2,
...

Type 2

• Low-degree equivalence

y = x1/d → x = yd

• Slow in Plain

• Fewer rounds

• Fewer constraints

• Vision, Rescue, Grendel,
Griffin, Anemoi, Arion,
...

Type 3

• Lookup tables

y = T [x]

• Fast in Plain

• Fewer rounds

• Constraints depend on
proof system

• Reinforced Concrete,
Tip5, Skyscraper, ...
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MiMC Cipher

(x 7→ x3 is a permutation iff n = 2n′ + 1 odd and p ≡3 2)

Assuming p ≈ 2n, large number of rounds: ⌈log3 p⌉ ≈ ⌈n · log3 2⌉.
E.g., for p ≈ 2128:
• AES: 10 rounds and ≈ 960 (MPC) multiplications;
• MiMC: 81 rounds and 162 (MPC) multiplications.
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Partial-SPN Symmetric Primitives

Idea: Move from full
S-Box layer

SF(x) = [S(x1)∥S(x2)∥ . . . ∥S(xt)]

to Partial S-Box layer

SP(x) = [S(x1)∥x2∥ . . . ∥xt] .
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P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:
• cheaper to compute than SPN
• one S-Box per round is sufficient for increasing the overall degree, crucial for

preventing (some) algebraic attacks;
but
• guarantee security of P-SPN against statistical attacks is harder than for SPN:

the "wide-trail" design strategy does not apply, and ad-hoc security argument
must be provided.

Examples: attacks against the P-SPN schemes Zorro (variant of AES) and LowMC.



12 Greek and Roman Gods in Symmetric-Key Crypto

P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:
• cheaper to compute than SPN
• one S-Box per round is sufficient for increasing the overall degree, crucial for

preventing (some) algebraic attacks;
but
• guarantee security of P-SPN against statistical attacks is harder than for SPN:

the "wide-trail" design strategy does not apply, and ad-hoc security argument
must be provided.

Examples: attacks against the P-SPN schemes Zorro (variant of AES) and LowMC.



13 Greek and Roman Gods in Symmetric-Key Crypto

Recall: Wide-Trail Design Strategy (AES-Like Design)

• Design strategy for preventing differential (and linear) attacks;
• Goal: minimize probability of any differential characterestic ΔI → ΔO:

|{x | Ek(x + ΔI) − Ek(x) = ΔO}|
pt ;

• Remember: only the S-Boxes impact such probability;
• Idea: choose linear layers that active as many S-Boxes as possible, e.g., by

instantiating them with "Maximum Distance Separable" (MDS) matrices.
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“Hades” Strategy

How to reduce number of non-linear operations & guarantee security with
simple/elegant argument?
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The Block Cipher HadesMiMC

ARK(·)

S S S S S S . . . S

M(·)

ARK(·)

. . . S

M(·)

ARK(·)

S S S S S S . . . S

M(·)

...

ARK(·)

RFull

RPartial

RFull

• S(x) = xd where gcd(d, p − 1) = 1;
• Linear layer: multiplication with a

MDS matrix in Ft×t
p ;

• Subkeys defined via an affine map
applied to the master key;

• Number of rounds (κ ≈ log2(p)):

RF = 2 · Rf = 6 ,
RP ≈ logd(p)
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Overview of Security Analysis

• Key-guess: possible only for a single round (due to the size of the key);
• Security against differential/linear attacks: external full rounds only, due to

Wide-Trail design strategy:
▶ DPmax(x 7→ xd) = (d − 1)/p and t + 1 S-Boxes active every 2 rounds;
▶ each differential trail has probability

(
d−1

p

)r·(t+1)/2
≪ 2−κ for r ≥ 4;

• Security against MitM interpolation attack: maximum degree is mostly achieved
via the internal partial rounds;

• Security against Gröbner Basis/factorization attack: combination of internal
and external rounds.
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Sponge Hash Function

Assuming P over Fc+r
2 is an ideal permutation: security up to min{2χ, 2c/2}.
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Poseidon

• Poseidon is a sponge hash function instantiated by the HadesMiMC permuta-
tion (that is, round keys are replaced by round constants).

• Number of rounds for Poseidon is a bit different than the number of rounds
of HadesMiMC (due to different attacks):
▶ 4 + 4 = 8 external full rounds (instead of 6);
▶ partial rounds still ≈ logd(p).

• Low degree permutation: used both for evaluation and for verification.
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Poseidon2

Same number of rounds of Poseidon, but (i) two different linear layers (one for
external rounds & one for internal ones) + (ii) additional initial linear layer:
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Poseidon2: Linear Layer for Internal/Partial Rounds

• New matrix MI in partial internal rounds:
µ0,0 1 1 . . . 1

1 µ1,1 1 . . . 1
1 1 µ2,2 . . . 1
...

... . . . ...
1 1 1 . . . µt−1,t−1

 ;

• Values µ0,0, . . . , µt−1,t−1 ∈ Fp \ {0} chosen such that:
▶ the matrix is invertible;
▶ no infinitely-long subspace trail for the internal rounds – see

L. Grassi, C. Rechberger, M. Schofnegger: “Proving Resistance Against Infinitely Long
Subspace Trails: How to Choose the Linear Layer.”. IACR ToSC 2021
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Poseidon2: Linear Layer for External/Full Rounds
Let t = 4 · t′ be a multiple of 4. Then ME ∈ Ft×t

p is defined as

ME =


2 · M4×4 M4×4 . . . M4×4

M4×4 2 · M4×4 . . . M4×4
...

... . . . ...
M4×4 M4×4 . . . 2 · M4×4

 ,

where M4×4 ∈ F4×4
p is a MDS matrix which can be efficiently evaluated as
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Gröbner Basis + (External) Subspace Trail: Poseidon(2)

Figure: A. Bariant, C. Bouvier, G. Leurent, L. Perrin:
“Algebraic Attacks against Some Arithmetization-
Oriented Primitives.” IACR ToSC 2022

• Initial invertible S-Box layer
does not provide extra secu-
rity:

[S(x0), . . . , S(xr−1), S(IVr), . . . , S(IVt−1)]
→ [x0, . . . , xr−1, IVr, . . . , IVt−1] ;

• Exploit degrees of freedom:
skip extra full round (thanks
also to homomorphic prop-
erty of the S-Box S(α · x) =
S(α) · S(x)).
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Gröbner Basis + (Internal) Subspace Trail: Poseidon(2) (1/2)

Exploit degrees of freedom to skip internal partial rounds:
• let S(ℓ) be

S(ℓ) :=
{

x ∈ Ft | ∀i ∈ {0, 1, . . . , ℓ − 1} : [Mi × x]0 = 0
}

;

• given x ∈ S(ℓ) + σ, then S-Boxes are constant (= inactive) for ℓ partial rounds;
• GB attack (for 1 ≤ ℓ ≤ r − χ ≡ rate − digest):

x ∈ Ft Rr
P ◦ R4

F (·)
−−−−−−→ S(ℓ) Rℓ

P(·)
−−−→ Mℓ−1 × S(ℓ) R4

F ◦ Rr′
P (·)

−−−−−−→ h ∈ Fχ

where r + ℓ + r′ = number of partial rounds.
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Gröbner Basis + (Internal) Subspace Trail: Poseidon(2) (2/2)
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Poseidon(2)b over Binary Fields

Versions of Poseidon/Poseidon2 over binary fields Ft
2n for n ∈ {32, 64, 128} tar-

getting Binius:
• matrix MI for internal partial rounds as in Poseidon2;
• matrix for external full rounds:

▶ MDS for Poseidonb;
▶ ME (as in Poseidon2) for Poseidon2b;

• number of rounds:
▶ ≈ logd(2n) internal partial rounds;
▶ 4+4 external rounds for Poseidonb;
▶ 5+5 external rounds for Poseidon2b.
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Why Extra External Full Rounds for Poseidon2b?

Potentially, skip “several” external full rounds in a GB attack due to ME :
• the subspace

D = {(δ0, δ1, δ2, δ3, −δ0, −δ1, −δ2, −δ3, 0, 0, 0, 0, . . . , 0, 0, 0, 0) ∈ Ft | δ0, δ1, δ2, δ3 ∈ F}

is an invariant for ME with prob. 1 as circ(2, 1, . . . , 1) × [x, −x, 0, . . . , 0]T =
[x, −x, 0, . . . , 0]T ;

• invariant over one full external round with probability |F|−4;
• still, possibility to exploit it together with the degrees of freedom of the hash

function & homomorphic property of the S-Box to skip external full rounds.
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Reducing the Number of Multiplications

S(x) = xd can be computed with ⌊log2(d)⌋ squares + hw(d) − 1 multiplications
(total of ⌊log2(d)⌋ + hw(d) − 1 ≥ 2 for d ≥ 3).

−→ Each external round costs (⌊log2(d)⌋ + hw(d) − 1) · t ≥ 2 · t multiplications!

Goal: construct new invertible non-linear layers over Ft
p that

• cost t multiplications (e.g., of degree 2);
• “fully” non-linear (no Feistel/Lai-Massey);
• have (potentially) high-degree inverse.
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SI-Lifting Functions SF (1/2)

Let S : Fn
p → Fn

p be a generic non-linear function:

S(x0, x1, . . . , xn−1) = y0∥y1∥ . . . ∥yn−1 where
∀i ∈ {0, 1, . . . , n − 1} : yi := Fi(x0, x1, . . . , xn−1)

for certain Fi : Fn
p → Fp.

−→ Too many possible cases to analyze!

Idea: focus on shift-invariant transformations over Fn
p defined by a single local

update rule F : Fm
p → Fp for 1 ≤ m ≤ n.
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SI-Lifting Functions SF (2/2)

The Shift Invariant (SI) lifting function SF : Fn
p → Fn

p induced by F : Fm
p → Fp is

defined as

SF(x0, x1, . . . , xn−1) = y0∥y1∥ . . . ∥yn−1 where
∀i ∈ {0, 1, . . . , n − 1} : yi := F(xi, xi+1, . . . , xi+m−1) .

“Shift Invariant” property due to the fact that:

Πi ◦ SF = SF ◦ Πi

for each shift function Πi(x0, x1, . . . , xn−1) = xi∥xi+1∥ . . . ∥xi+n−1.
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Example of SI-Lifting Functions over Fn
2

See Joan Daemen’s PhD Thesis (“Cipher and Hash Function Design Strategies based
on linear and differential cryptanalysis”):
• given the chi function χ : F3

2 → F2:

χ(x0, x1, x2) = x0 ⊕ (x1 ⊕ 1) · x2 ,

then Sχ over Fn
2 is invertible if and only if gcd(n, 2) = 1;

• given F(x0, x1, x2, x3) = x0 ⊕ (x1 ⊕ 1) · x2 · x3, then SF over Fn
2 is invertible if

and only if gcd(n, 3) = 1;
• given F(x0, x1, . . . , x5) = x1 ⊕ (x0 ⊕ 1) · (x2 ⊕ 1) · x3 · (x5 ⊕ 1), then SF over Fn

2 is
invertible for each n ≥ 6.
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Our Goal

Let
• p ≥ 3;
• F : Fm

p → Fp quadratic.
Given SF : Fn

p → Fn
p defined as before, that is,

SF(x0, x1, . . . , xn−1) = y0∥y1∥ . . . ∥yn−1 where
∀i ∈ {0, 1, . . . , n − 1} : yi := F(xi, xi+1, . . . , xi+m−1) ,

then
• is it possible to find F for which SF is invertible?
• if yes, for any value of n and/or m?
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Main Result for m = 2

Theorem
Let p ≥ 3 be a prime, let m = 2, and let n ≥ 2. Let F : F2

p → Fp be a quadratic
function. Given SF over Fn

p:
• if n = 2, then SF is invertible if and only if

F(x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2

for γ0 ̸= ±γ1;
• if n ≥ 3, then SF is never invertible.
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Sketch of the Proof – Case: m = 2 and n ≥ 3 (1/2)

Collisions over F3
p of the form

SF(0, x0, x1) = SF(0, x′
0, x′

1) ,

imply collisions over Fn
p for each n ≥ 3 of the form

SF(0, x0, x1, 0, 0, . . . , 0) = SF(0, x′
0, x′

1, 0, 0, . . . , 0) .

Indeed, both are satisfied by

F(0, x0) = F(0, x′
0) , F(x0, x1) = F(x′

0, x′
1) , F(x1, 0) = F(x′

1, 0) .

−→ We limit ourselves to n = 3 and SF(0, x0, x1) = SF(0, x′
0, x′

1).
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Sketch of the Proof – Case: m = 2 and n ≥ 3 (1/2)
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Sketch of the Proof – Case: m = 2 and n ≥ 3 (2/2)

Necessary requirements for invertibility of SF :
• α2,0 + α1,1 + α0,2 = 0;
• α1,0 + α0,1 ̸= 0.

In the paper, collisions are proposed in order to cover all the cases just given. E.g.,
if α2,0, α1,1 ̸= 0 with α2,0 + α1,1 + α0,2 = 0:

SF

(
0,

α0,2 · α1,0
α1,1 · α2,0

−
α0,1
α1,1

, x
)

= SF

(
0,

α0,2 · α1,0
α1,1 · α2,0

−
α0,1
α1,1

, −x −
α1,0
α2,0

)
for each x ∈ Fp.
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Main Result for m = 3 and n ≥ 5

Theorem
Let p ≥ 3 be a prime, let m = 3, and let n ≥ 5. Let F : F3

p → Fp be any quadratic
function. The SI-lifting function SF over Fn

p induced by F is never invertible.

• Strategy of the proof similar to the one just proposed for m = 2 and n ≥ 3.
• Different from the binary case, for which SF over Fn

2 can be invertible depending
on F : F3

2 → F2 and on n (e.g., χ).
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Neptune’s External Rounds: Non-Linear Layer

Goal: modify the external rounds for reducing the total number of multiplications
without decreasing the security.
• Given any quadratic F : F≤3

p → Fp, then SF over F≥5
p is not invertible.

• Let t = 2 · t′ even. Non-linear layer of Neptune’s external rounds via concate-
nation of S-Boxes S over F2

p, defined as

S(x0, x1) = S ′ ◦ A ◦ S ′(x0, x1)

where (for γ ̸= 0):

S ′(x0, x1) = x0 + (x0 − x1)2∥x1 + (x0 − x1)2 ,

A(x0, x1) =
[
γ
0

]
+

[
2 1
1 3

]
×

[
x0
x1

]
.
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Neptune’s External Rounds: Linear Layer

Given the state as an element of Ft′×2
p ≡ Ft/2×2

p :
• apply the S-Boxes over F2

p on each row;
• multiply each column by a t′ × t′ MDS matrix.

Not every MDS matrix is equally good! E.g., over F4
p, given

M =
[

2 1
1 2

]
and M′ =

[
1 2
2 1

]
,

the degree grows as 4, 14, 56, ... instead of 4, 42 = 16, 43 = 64, ...
−→ conditions on the MDS matrices – see M. Urani and L. Grassi: “Corrigendum to
’Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fn

p –
Application to Poseidon’”. IACR ToSC 2026.
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Neptune versus Poseidon (with S(x) = x5)

Cost of t multiplications for computing S (versus ≥ 2 · t for power maps).

Table: Comparison of Poseidon and Neptune – both instantiated with d = 5 – for the case
p ≈ 2128 (or bigger), κ = 128, and several values of t ∈ {4, 8, 12, 16}.

t RF RP & RI Multiplicative Complexity
Poseidon (d = 5) 4 8 60 276 (+ 21.0 %)
Neptune (d = 5) 4 6 68 228
Poseidon (d = 5) 8 8 60 372 (+ 40.1 %)
Neptune (d = 5) 8 6 72 264
Poseidon (d = 5) 12 8 61 471 (+ 53.9 %)
Neptune (d = 5) 12 6 78 306
Poseidon (d = 5) 16 8 61 567 (+ 64.3 %)
Neptune (d = 5) 16 6 83 345
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Table of Contents

Motivation: ZK-Friendly Schemes

Ancestors of Poseidon: MiMC and HadesMiMC (for MPC)
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What about the Non-Invertible Non-Linear Layer?

Let p ≥ 3. Given any quadratic function F : Fm
p → Fp, then the SI-lifting function

SF over Fn
p is not invertible if

• m = 1, n ≥ 1;
• m = 2, n ≥ 3;
• m = 3, n ≥ 5.

It is trivial to find collisions for a hash function instantiated with such non-
invertible quadratic functions!

Remark: we discourage the use of low-degree non-bijective components for designing
symmetric primitives in which the internal state is not obfuscated by a secret.
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Non-Invertible Non-Linear Layer for Ciphers (1/2)

Let’s use them for instantiating a cipher! The non-linear layer

[x0, x1, . . . , xn−1] 7→ [x2
0, x2

1, . . . , x2
n−1]

over Fn
p is not a good choice in general:

• number of collisions given by

(2 · p − 1)n − pn

pn · (pn − 1) ≈ 2n − 1
pn − 1 ;

• key-recovery attacks can be potentially set up by exploiting the fact that
[x2

0, x2
1, . . . , x2

n−1] = [y2
0 , y2

1 , . . . , y2
n−1] if and only if xi = ±yi.
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Non-Invertible Non-Linear Layer for Ciphers (2/2)

Goal: Find the quadratic function F : F2
p → Fp such that

1. the number of collisions in SF over Fn
p is minimized;

2. minimize the multiplicative cost of computing SF .

Such function is F(x0, x1) = x2
1 + x0 (or similar) for which

• the probability that a collision occurs at the output of SF over Fn
p is

(p − 1)n

pn · (pn − 1)/2 ≤ 2
pn (≪ 1 for big p) ;

• SF(x0, x1, . . . , xn−1) = SF(y0, y1, . . . , yn−1) implies xi ̸= yi for all i.
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From HadesMiMC to Pluto

Idea: replace the non-linear layer (x0, x1, . . . , xt−1) 7→ (xd
0 , xd

1 , . . . , xd
t−1) in the

external rounds with

(x0, x1, . . . , xt−1) 7→ (x2
1 + x0, x2

2 + x1, . . . , x2
0 + xt−1) ,

which costs t multiplications independently of p.

Security analogous to the one proposed for HadesMiMC. Main differences:
• collision probability at the output of Pluto ≪ 2−κ;
• external rounds are not invertible, but only local inverses can be set up: we

conjecture that 4 + 4 = 8 external rounds are sufficient to prevent algebraic
attacks in the backward direction.
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Multiplicative Complexity (MPC): HadesMiMC versus Pluto

Comparison between HadesMiMC (instantiated with x 7→ x3) and Pluto for the
case p ≈ 2128, κ = 128, and several values of t ∈ {4, 8, 12, 16}:

t RF RP Multiplicative Complexity
HadesMiMC (d = 3) 4 6 47 142 (+ 22.4 %)

Pluto 4 8 42 116
HadesMiMC (d = 3) 8 6 48 192 (+ 24.7 %)

Pluto 8 8 45 154
HadesMiMC (d = 3) 12 6 49 242 (+ 24.7 %)

Pluto 12 8 49 194
HadesMiMC (d = 3) 16 6 49 290 (+ 26.1 %)

Pluto 16 8 51 230
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Summary

• Several hash functions have been proposed for ZK: Poseidon(2)/Poseidon(2)b
seem to be both competitive and secure;

• More cryptanalysis (especially, third-party cryptanalysis) is required to in-
crease our confidence in the security:
▶ Ethereum initiative/challenges;

• Poseidon(2)/Poseidon(2)b is not the end of the story: potential improvements
in the design are possible!
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Thanks for your attention!

Questions?

Comments?
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