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Recent Applications

Symmetric cryptography primitives may be needed in:
* secure multi-party computation (MPC),
* homomorphic encryption (HE),
* zero-knowledge proofs (ZK),

where
1. details of the used symmetric algorithm may influence the protocols efficiency;

2. many of such protocols are naturally defined over (Fp)" for a large prime integer
p (e.q., p ~ 232 264 or 2236),
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Cost Metric of MPC-/HE-/ZK-Friendly Schemes

Demand of new specific symmetric primitives over prime fields for these new
applications!

Rough Cost Metric:
* Linear/Affine functions: almost free;
* Non-linear functions: expensive.

(Important: the size p of the field does not impact the cost in these MPC/HE/ZK
applications!)
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Cost Metrics for ZK (1/2)

Focusing on Zero-Knoweldge (R1CS and AIR):

* number of multiplications required during the verification process as a good
estimation of the complexity of a ZK-friendly scheme;

* roughly speaking, the depth and (slightly) the number of affine operations
during the verification process impact the cost for AIR as well.

6 Greek and Roman Gods in Symmetric-Key Crypto TU/e



Cost Metrics for ZK (1/2)

Focusing on Zero-Knoweldge (R1CS and AIR):

* number of multiplications required during the verification process as a good
estimation of the complexity of a ZK-friendly scheme;

* roughly speaking, the depth and (slightly) the number of affine operations
during the verification process impact the cost for AIR as well.

In Plonkup (Plonk + Plookup) and Binius:
* look-up tables are relatively cheap — different cost metric.
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Cost Metrics for ZK - Examples (2/2)

Given x and y = xP~2 = 1 /x over Fp, verified via

Vx,y #0: x-y=1.
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Cost Metrics for ZK - Examples (2/2)

Given x and y = xP~2 = 1 /x over Fp, verified via

Vx,y #0: x-y=1.

Given x and y = x'/9 over Fp s.t. gcd(d, p — 1) = 1, then verified via

y'—x=0.
(Note: if d is small, then 1/d is huge! E.g., d =3 and 1/d =(2p — 1)/3.)
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The ZK-friendly Symmetric Crypto Zoo

= Type 2

* Low-degree * Low-degree equivalence

_d
y=x y:X1/d_>XZyd
* Slow in Plain

* Many rounds
y * Fewer rounds

* Often more con-
straints

* GMIMC, POSEIDON,
NEPTUNE, POSEIDON2,

* Vision, Rescue, Grendel,
GRIFFIN, Anemoi, Arion,
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Type 3

Lookup tables

y=TI[K|

Fewer rounds

Reinforced Concrete,

Tip5, Skyscraper, ...
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MiMC Cipher

k k®c k
x *éﬁ X3 é@ X3 |---- X3 ﬂé—w
(x — x3 is a permutation iff n = 2n’ + 1 odd and p =5 2)
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MiMC Cipher

k k®c k
x *)$_> X3 QE X3 |---- X3 ﬂé—w
(x — x3 is a permutation iff n = 2n’ + 1 odd and p =5 2)

Assuming p ~ 2", large number of rounds: [logz p] =~ [n - logz 2].
E.g., for p ~ 2128:

* AES: 10 rounds and =~ 960 (MPC) multiplications;

* MiMC: 81 rounds and 162 (MPC) multiplications.
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Partial-SPN Symmetric Primitives

-@
[Cround 1
&
[ roind |
-@
Mixing transformation

-@

Key Schedule

-@
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Partial-SPN Symmetric Primitives

-@

rou aF

D
[ round |
-@

-@

Key Schedule

=

Mixing transformation

Idea: Move from full
S-Box layer

Sf(x) = [SC) IS - - [1S(xe)]
to Partial S-Box layer

Sp(x) = [SCa)lxall - - lixel
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P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:
* cheaper to compute than SPN

* one S-Box per round is sufficient for increasing the overall degree, crucial for
preventing (some) algebraic attacks;
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P-SPN versus SPN: Advantages and Disadvantages

Advantages of P-SPN:
* cheaper to compute than SPN
* one S-Box per round is sufficient for increasing the overall degree, crucial for
preventing (some) algebraic attacks;
but

* guarantee security of P-SPN against statistical attacks is harder than for SPN:
the "wide-trail" design strategy does not apply, and ad-hoc security argument
must be provided.

Examples: attacks against the P-SPN schemes Zorro (variant of AES) and LowMC.
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Recall: Wide-Trail Design Strategy (AES-Like Design)

* Design strategy for preventing differential (and linear) attacks;
* Goal: minimize probability of any differential characterestic A; — Ap:

[{X | Exg(x + A1) — Eg(x) = Do}
pt ’
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Recall: Wide-Trail Design Strategy (AES-Like Design)

* Design strategy for preventing differential (and linear) attacks;
* Goal: minimize probability of any differential characterestic A; — Ap:

[{X | Exg(x + A1) — Eg(x) = Do}
pt ’

* Remember: only the S-Boxes impact such probability;

* Idea: choose linear layers that active as many S-Boxes as possible, e.g., by
instantiating them with "Maximum Distance Separable" (MDS) matrices.
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“Hades” Strategy

How to reduce number of non-linear operations & quarantee security with
simple/elegant argument?

I TE [T
$99958 ¢ S SIS[STsTs]s) - fs]
222 Q S
22202020 2 2 2
2202228 2 Identity |- ° Identity $
22202020 2 2 s
$95538 $ 0
S S S S

SRS . iy
[SIsIsIsIsIs] - {s] [s[sTsTsTs]s][s]

(a) SPN (b) P-SPN (c) “Hades” strategy
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The Block Cipher HADESMIMC

ARK(- J

Reul * S(x) = x9 where ged(d,p — 1) = 1;

l‘ ] M() ‘ ‘l * Linear layer: multiplication with a
| A0 | MDS matrix in F5*;
‘ ‘ ‘ ‘ ‘ ‘ Reartial * Subkeys defined via an affine map
| I — \M(')\ \ I | applied to the master key;
RK() - - * Number of rounds (s =~ logy(p)):

M

[

RE=2-R; =6,
Rp ~ logq(p)

<;
|
|
|
|
—
|
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Overview of Security Analysis

* Key-guess: possible only for a single round (due to the size of the key);
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Overview of Security Analysis

* Key-guess: possible only for a single round (due to the size of the key);

* Security against differential/linear attacks: external full rounds only, due to
Wide-Trail design strategy:

» DPmax(x — x9) = (d — 1)/p and t + 1 S-Boxes active every 2 rounds;

(t+1)/2
d_1)r( A < 2 % forr>4;

» each differential trail has probability (T
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Overview of Security Analysis

16

Key-guess: possible only for a single round (due to the size of the key);

Security against differential/linear attacks: external full rounds only, due to
Wide-Trail design strategy:

» DPmax(x — x9) = (d — 1)/p and t + 1 S-Boxes active every 2 rounds;

r-(t+1)/2
‘7’1,%1) (Y < 2 % forr>4;
Security against MitM interpolation attack: maximum degree is mostly achieved
via the internal partial rounds;

Security against Grobner Basis/factorization attack: combination of internal
and external rounds.

» each differential trail has probability (
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Sponge Hash Function

M c F* H e FX

r /—\T‘
0" D B [ D -
P P P P P P
0° ! | x > > > P—> ¢ > > >
\_/ _/ _/ ? N\ \_/ \_/
0l

Assuming P over F5*" is an ideal permutation: security up to min{2X, 2¢/2}.
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POSEIDON

* POSEIDON is a sponge hash function instantiated by the HADESMIMC permuta-
tion (that is, round keys are replaced by round constants).

* Number of rounds for POSEIDON is a bit different than the number of rounds
of HADESMIMC (due to different attacks):

> 4 + 4 = 8 external full rounds (instead of 6);
» partial rounds still ~ log4(p).

* Low degree permutation: used both for evaluation and for verification.
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POSEIDON2

Same number of rounds of POSEIDON, but (i) two different linear layers (one for
external rounds & one for internal ones) + (ii) additional initial linear layer:

EL0) T Ve ()
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POSEIDON2: Linear Layer for Internal/Partial Rounds

* New matrix Mz in partial internal rounds:

noo 1 1
T g 1 1
1 T m22
1 1 1 He—1t—1

* Values ugo, ..., pt—1t—1 € Fp \ {0} chosen such that:
» the matrix is invertible;

» no infinitely-long subspace trail for the internal rounds - see

L. Grassi, C. Rechberger, M. Schofnegger: “Proving Resistance Against Infinitely Long
Subspace Trails: How to Choose the Linear Layer.”. IACR ToSC 2021
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POSEIDONZ2: Linear Layer for External/Full Rounds

Lett =4 -t be a multiple of 4. Then Mg € F,*" is defined as

2-Myya  Mayxsq ... Myxs
Mysa  2-Mgys ... Msyyxs
Mg = . . )
My 4 Mysa ... 2-Mgyy

where Mg, 4 € IFf;XA' is @ MDS matrix which can be efficiently evaluated as

>ee V»éé—;
I XII ,
- 1:/\‘1\ B—)\—@—>
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Grobner Basis + (External) Subspace Trail: POSEIDON(2)

? ? 0
b b, b a,
? ? S1(_4)
. . .
| u |
1 1 1
AoS7H(X) — b A7 (X) —ely, SyNe) — ey
|
B ¢} %& ety B,
Sa(Ag)X Sa(A—2)X g

Figure: A. Bariant, C. Bouvier, G. Leurent, L. Perrin:
“Algebraic Attacks against Some Arithmetization-
Oriented Primitives.” IACR ToSC 2022
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* Initial invertible S-Box layer
does not provide extra secu-
rity:

* Exploit degrees of freedom:
skip extra full round (thanks
also to homomorphic prop-
erty of the S-Box S(« - x) =
S(a) - S(x)).
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Groébner Basis + (Internal) Subspace Trail: POSEIDON(2) (1/2)

Exploit degrees of freedom to skip internal partial rounds:
* let S() be

SO = {xeF|vie{01,....0—1}: [M xx]o=0};

« given x € S() + ¢, then S-Boxes are constant (= inactive) for ¢ partial rounds;
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Groébner Basis + (Internal) Subspace Trail: POSEIDON(2) (1/2)
Exploit degrees of freedom to skip internal partial rounds:
* let S() be

SO = {xeF|vie{01,....0—1}: [M xx]o=0};

« given x € S() + ¢, then S-Boxes are constant (= inactive) for ¢ partial rounds;
* GB attack (for 1 < ¢ <r — x =rate — digest):

4 0 A /
xept BoREO o) ReO) o1 (o) ReoRe O o o
where r + ¢ + r' = number of partial rounds.
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Groébner Basis + (Internal) Subspace Trail: POSEIDON(2) (2/2)

40

20

Min. rp for k =128

80

60

40

Min. rp for k = 128

20

[110) S—
40
¥ .
. T + 20 =
- R +
f il S NE— e
oLE
12 16 20 24 8 12 16 20 24
(@) pr2*, c=X=4,d=3 (b) p~2", c=X=3,d=3
oo sof Tt
=
60
40
— " 20 -
£ 77% ———F 3 to, g '
0
8 1216 20 24 4 8 12 16 20 24
(c) pm 2™ c=X=2d=3 (d) p=2¥% c=X=1,d=3
—=—  Basic Attacks w/o S *—  Forward GB Attack w/ S
*- Designers’ Analysis w/ S

—<  Designer’s Recommendation
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POSEIDON(2)B over Binary Fields

Versions of POSEIDON/POSEIDONZ2 over binary fields IFE,, forn e {32,64,128} tar-
getting Binius:

* matrix Mz for internal partial rounds as in POSEIDON2;

* matrix for external full rounds:

» MDS for POSEIDONB;
» Mg (as in POSEIDON2) for POSEIDON2B;

* number of rounds:

> ~ logy(2") internal partial rounds;
» 4+4 external rounds for POSEIDONB;
» 5+5 external rounds for POSEIDON2B.
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Why Extra External Full Rounds for POSEIDON2B?

Potentially, skip “several” external full rounds in a GB attack due to Mg:
* the subspace

D = {(d9, 01,03, 03, =0, =07, =0, —03,0,0,0,0,...,0,0,0,0) € Ft | &y, 81, 05,05 € F}

is an invariant for M¢ with prob. 1 as circ(2,1, ..., 1) x [x,—x,0,..., 0] =
[x,—x,0,...,0]";
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Why Extra External Full Rounds for POSEIDON2B?

Potentially, skip “several” external full rounds in a GB attack due to Mg:
* the subspace
D = {(0g. 07,03, 03, —dg, =61, —03,—03,0,0,0,0,...,0,0,0,0) € F* | 5y, 07, 05, 03 € F}

is an invariant for M¢ with prob. 1 as circ(2,1, ..., 1) x [x,—x,0,...,
[x,—x,0,...,0]";

« invariant over one full external round with probability [F|~4;

* still, possibility to exploit it together with the degrees of freedom of the hash
function & homomorphic property of the S-Box to skip external full rounds.
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Reducing the Number of Multiplications

S(x) = x¥ can be computed with [log>(d)] squares + hw(d) — 1 multiplications
(total of [logy(d)| + hw(d) — 1 > 2 for d > 3).

— Each external round costs (|logy(d)| + hw(d) — 1) - t > 2 - t multiplications!
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Reducing the Number of Multiplications

S(x) = x¥ can be computed with [log>(d)] squares + hw(d) — 1 multiplications
(total of [logy(d)| + hw(d) — 1 > 2 for d > 3).

— Each external round costs (|logy(d)| + hw(d) — 1) - t > 2 - t multiplications!

Goal: construct new invertible non-linear layers over IFf, that
* cost t multiplications (e.g., of degree 2);
* “fully” non-linear (no Feistel/Lai-Massey);
* have (potentially) high-degree inverse.
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SI-Lifting Functions Sg (1/2)

Let S : Fp — Fj be a generic non-linear function:

S(xo. X1, Xp_1) =Yolvall--- Va1 where
vie{0,1,..., n—1}: Yi:=Fi(xo.Xq,---, Xn_1)

for certain F; : Fp — Fp.
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SI-Lifting Functions Sg (1/2)

Let S : Fp — Fj be a generic non-linear function:

S(xo. X1, Xp_1) =Yolvall--- Va1 where
vie{0,1,..., n—1}: Yi:=Fi(xo.Xq,---, Xn_1)

for certain F; : Fp — Fp.
— Too many possible cases to analyze!

Idea: focus on shift-invariant transformations over IF;,’ defined by a single local
update rule F : IF;," — Fpfor1<m<n.
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SI-Lifting Functions Sr (2/2)

The Shift Invariant (SI) lifting function S¢ : Fj — Fp induced by F : Fp' — Fp is
defined as

Sk(X0. X1, -- -, Xn—1) =Yolvall---lYn—1  where
vie {0,1,..., n—1}: Vi =F(Xj, Xj1q, .-, Xitm—1) -
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SI-Lifting Functions Sr (2/2)

The Shift Invariant (SI) lifting function S¢ : Fj — Fp induced by F : Fp' — Fp is
defined as

Sr(X0. X1, - -+, Xn—1) =Yolvall---lYn—1  where

vie{0,1,..., n—1%: Vi =F(Xj, Xj1q, .-, Xitm—1) -

“Shift Invariant” property due to the fact that:
MjoSp=Spoll

for each shift function ni(Xo,X1 ..... an'l) = X,'HX,'_’_‘] ” A HXI'—H')—'I .
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Example of SI-Lifting Functions over ]

See Joan Daemen'’s PhD Thesis (“Cipher and Hash Function Design Strategies based
on linear and differential cryptanalysis"):

* given the chi function y : IF% — Fy:
X(X0,X1,X2) =X @ (X1 ®1) - X2,

then S, over ] is invertible if and only if ged(n, 2) = 1;
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Example of SI-Lifting Functions over ]

See Joan Daemen'’s PhD Thesis (“Cipher and Hash Function Design Strategies based
on linear and differential cryptanalysis"):

* given the chi function y : IF% — Fy:

X(X0, X1, X2) = X0 © (X1 & 1) - X,

then S, over ] is invertible if and only if ged(n, 2) = 1;

* given F(xp, X1, X2,X3) = Xo @ (X1 ® 1) - X - x3, then S¢ over FJ is invertible if
and only if ged(n,3) = 1;

* given F(xg,X1,....X5) =X ®@ (X ®1)- (X2 1) -x3- (x5 ® 1), then S¢ over FJ is
invertible for each n > 6.
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Our Goal

Let
*p>3;
* F:Fp — Fp quadratic.
Given S¢ : Fﬁ — ]Fg defined as before, that is,

Sr(X0. X1, - -+, Xp—1) =Yolvall---¥n—1  where
Vi€{0,1,...,n—1}: Yi = F(Xivxi+'|""'xi+m—1)’

then
* is it possible to find F for which Sk is invertible?
* if yes, for any value of n and/or m?
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Main Result for m =2

Theorem
Letp > 3 be a prime, letm =2, and letn > 2. Let F : Flz, — Fp be a quadratic

function. Given Sg over Fp:
* if n = 2, then Sg is invertible if and only if

2
F(x0.X1) =70 - Xo + 71 - X1 + 72 - (X0 — X1)

foryg # £,
* if n > 3, then Sk is never invertible.
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Sketch of the Proof - Case: m =2 and n > 3 (1/2)

Collisions over F3 of the form
SF(0. X0, X1) = Sp(0,x5,X7)
imply collisions over Fj for each n > 3 of the form
SF(0,x0.X1,0,0,...,0) = Sg(0,xp,%7,0,0,...,0).
Indeed, both are satisfied by

F(0.xg) = F(0,xp), F(xo.X1) = F(xg.X}), F(x1,0) = F(x7,0).
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Sketch of the Proof - Case: m =2 and n > 3 (1/2)

Collisions over F3 of the form
SF(0. X0, X1) = Sp(0,x5,X7)
imply collisions over Fj for each n > 3 of the form
SF(0,x0.X1,0,0,...,0) = Sg(0,xp,%7,0,0,...,0).
Indeed, both are satisfied by
F(0,x0) = F(0,x5),  F(xo.X1) = F(xg.X7), F(xq,0) = F(x1,0).
— We limit ourselves to n = 3 and Sg(0, xg, x1) = Sg(0, x5, X7 ).
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Sketch of the Proof - Case: m = 2 and n > 3 (2/2)

Necessary requirements for invertibility of Sg:
*motargtagy=0;
*ar9+agq #0.

In the paper, collisions are proposed in order to cover all the cases just given. E.g.,
if 20,11 = 0 with 020 + 01 1 -+ o2 = 0:

(6 e « « gNes Q| (0%
s (0, 02°1,0 @01 ’X> _ s (0' 02°10 _ %01 _, 1,0)
ag1-020 01 a1-020 Q1 2,0

for each x € Fp.
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Main Result form=3andn > 5

Theorem
Let p > 3 be a prime, letm =3, and letn > 5. Let F : IFE — Fp be any quadratic

function. The SE-ifting function S over Fy; induced by F is never invertible.
* Strategy of the proof similar to the one just proposed form =2 and n > 3.

* Different from the binary case, for which Sg over F] can be invertible depending
on F: F3 — F, and on n (e.g., x).
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NEPTUNE's External Rounds: Non-Linear Layer

Goal: modify the external rounds for reducing the total number of multiplications
without decreasing the security.

. (i . <3 >5 . : .
Given any quadratic F : F;~ — Fp, then S over F5~ is not invertible.
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NEPTUNE's External Rounds: Non-Linear Layer

Goal: modify the external rounds for reducing the total number of multiplications
without decreasing the security.

. (i . <3 >5 . : .
Given any quadratic F : F;~ — Fp, then S over F5~ is not invertible.

* Lett =2t even. Non-linear layer of NEPTUNE's external rounds via concate-
nation of S-Boxes S over IE‘,% defined as

S(xo.x1) =8 0 A0S (x0,x1)
where (for v # 0):
S' (X0, X1) = X0 + (Xo — Xx1)?|x1 + (Xo — X1)?,
2 1 XO
1 3] % [x1

38 Greek and Roman Gods in Symmetric-Key Crypto TU/e
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NEPTUNE's External Rounds: Linear Layer

Given the state as an element of ]F,t,/xz = J}_?,t,/zxzz

* apply the S-Boxes over IB‘% on each row;
* multiply each column by a t’ x t’ MDS matrix.
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NEPTUNE's External Rounds: Linear Layer

Given the state as an element of ]F,t,/xz = J}_?,t,/zxzz
* apply the S-Boxes over IB‘% on each row;
* multiply each column by a t’ x t’ MDS matrix.
Not every MDS matrix is equally good! E.g., over F4, given
2 1 ;12
M% 2} and M{Z 1],

the degree grows as 4, 14, 56, ... instead of 4,42 = 16,43 = 64, ...
— conditions on the MDS matrices - see M. Urani and L. Grassi: “Corrigendum to

‘Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over IE‘/’,] -
Application to Poseidon™. IACR ToSC 2026.
TU/e
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NEPTUNE versus POSEIDON (with S(x) = x°)

Cost of t multiplications for computing S (versus > 2 - t for power maps).

Table: Comparison of POSEIDON and NEPTUNE - both instantiated with d = 5 - for the case
p ~ 2128 (or bigger), x = 128, and several values of t € {4, 8,12, 16}.

t | Re Rp &Ry | Multiplicative Complexity
PoseipoN(d =5) | 4 | 8 60 276 (+ 21.0 %)
NEPTUNE(d =5) | 4 | 6 68 228
PoseipoN (d =5) | 8 | 8 60 372 (+ 40.1 %)
NEPTUNE(d =5) | 8 | 6 72 264
PoseipoN (d =5) | 12 | 8 61 471 (+ 53.9 %)
NEPTUNE (d =5) | 12 | 6 78 306
PoSEIDON (d =5) | 16 | 8 61 567 (+ 64.3 %)
NEPTUNE (d =5) | 16 | 6 83 345
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What about the Non-Invertible Non-Linear Layer?

Let p > 3. Given any quadratic function F : Fj' — Fp, then the SI-lifting function
Sf over F is not invertible if

*m=1,n>1;
*m=2,n>3;
* m=3,n>5.
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What about the Non-Invertible Non-Linear Layer?

Let p > 3. Given any quadratic function F : Fj' — Fp, then the SI-lifting function
Sf over F is not invertible if

*m=1,n>1;
*m=2,n>3;
* m=3,n>5.

It is trivial to find collisions for a hash function instantiated with such non-
invertible quadratic functions!

Remark: we discourage the use of low-degree non-bijective components for designing
symmetric primitives in which the internal state is not obfuscated by a secret.
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Non-Invertible Non-Linear Layer for Ciphers (1/2)

Let’s use them for instantiating a cipher! The non-linear layer

over IFj is not a good choice in general:
* number of collisions given by

B i
pr-(pn—-1) T pr-1"

- key-recovery attacks can be potentlally set up by exploiting the fact that
x¢.x%,....x2_1=[3.y? ....y2_,]ifand only if x; = ty;.
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Non-Invertible Non-Linear Layer for Ciphers (2/2)

Goal: Find the quadratic function F : }FFZ, — Fp such that
1. the number of collisions in Sg over IFﬁ is minimized,;
2. minimize the multiplicative cost of computing Sr.
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Non-Invertible Non-Linear Layer for Ciphers (2/2)

Goal: Find the quadratic function F : }FFZ, — Fp such that
1. the number of collisions in Sg over IFﬁ is minimized,;
2. minimize the multiplicative cost of computing Sr.

Such function is F(xg, X1) = X12 + xg (or similar) for which
* the probability that a collision occurs at the output of S over IFg is

(p—1)" 2
("= 1)/2 = PP

(<« 1 for big p);

* Se(xp, X1, .-, Xn—1) =SrWo.Y1,---, Yn—1) implies x; # y; for all i.
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From HadesMiMC to PLuTO

Idea: replace the non-linear layer (xg, Xq,....X¢—1) — (xg,x1 ,...,qu_1) in the
external rounds with

2 2 2
(X0 X1+ Xp—1) = (XT + X0, X5 + X1, ..., X§ +Xe—1),

which costs t multiplications independently of p.
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From HadesMiMC to PLuTO

Idea: replace the non-linear layer (xg, Xq,....X¢—1) — (xg,x1 ,...,qu_1) in the
external rounds with

2 2 2
(X0 X1+ Xe—q) = (XT + X0, X5 + X1, ..., Xg +Xe—1),
which costs t multiplications independently of p.

Security analogous to the one proposed for HADESMIMC. Main differences:
* collision probability at the output of PLuto < 27%;

* external rounds are not invertible, but only local inverses can be set up: we
conjecture that 4 + 4 = 8 external rounds are sufficient to prevent algebraic
attacks in the backward direction.

45  Greek and Roman Gods in Symmetric-Key Crypto TU/e



Multiplicative Complexity (MPC): HadesMiMC versus PLUTO

Comparison between HADESMiIMC (instantiated with x — x3) and PLuTo for the
case p ~ 2128 . = 128, and several values of t € {4,8,12, 16}:

t | RF Rp | Multiplicative Complexity
HADESMIMC(d=3) | 4 | 6 47 142 (+ 22.4 %)
PLUTO 4 | 8 42 116
HADESMIMC(d=3) | 8 | 6 48 192 (+ 24.7 %)
PLUTO 8 | 8 45 154
HADESMIMC (d =3) | 12 | 6 49 242 (+ 24.7 %)
PLuTO 12| 8 49 194
HADESMIMC (d =3) | 16 | 6 49 290 (+ 26.1 %)
PLUTO 16 | 8 51 230
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Summary

* Several hash functions have been proposed for ZK: POSEIDON(2)/POSEIDON(2)B
seem to be both competitive and secure;

* More cryptanalysis (especially, third-party cryptanalysis) is required to in-
crease our confidence in the security:

» Ethereum initiative/challenges;

* POSEIDON(2)/POSEIDON(2)B is not the end of the story: potential improvements
in the design are possible!
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Thanks for your attention!
Questions?

Comments?
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